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Disordered Systems Which Escape the Bound
v=2/d

Recently Chayes, Chayes, Fisher, and Spencer!
(CCFS) have derived the inequality v=2/d for the
correlation-length exponent v of a generic disordered
system in d dimensions. Among the stated conditions
are that the disorder should be uncorrelated on long
length scales and that there should be a continuous tran-
sition with a diverging correlation length, £. This result
raises the following question: When should a system be
considered truly disordered? Indeed, one can often rep-
resent pure, uniform systems in a form that appears ran-
dom or disordered. Does this imply that the uniform sys-
tem should also satisfy v=2/d?

To answer these questions and gain insight into the
CCFS theorem consider the nearest-neighbor site-ran-
dom Ising model with

—W-J[Z]pipjs,-sj (Si=il), 1)
1,J

the p; being independently distributed according to
Plpa,A) =A8(p—2)+ (1 —1)8(p—cr); )

here A and_i are variable disorder parameters.! The
case ¢ =0, A =1 is the usual dilute Ising model, but con-
sider, instead, c = —1: This is a form of the Mattis mod-
el. The gauge transformation s/ =p;s;/A (all i) shows
that (1) is equivalent to a pure Ising ferromagnet with
J'=X%J. Hence this disordered model has the pure ex-
ponents. A recent estimate for d=3 is? v=0.632
+0.001 which certainly violates v= 2/d!

Now one must note that CCFS address only transi-
tions which can be undergone by the variation of a dis-
order parameter. Accordingly, let us fix A=1 and con-
sider the (T,A) phase diagram. The gauge transforma-
tion is valid for all A so that the critical locus, T.(1), is
independent of A; i.e., the critical line parallels the & axis
and, hence, cannot be crossed by our varying A! Thus
the model fails the CCFS conditions and, whether re-
garded as disordered or not, can escape the inequality
v=2/d. :

Conversely, fix A (%0,1) and vary A: This is
equivalent to the variation of 7 and does carry the sys-
tem through the transition. What has failed? The
answer is that varying A produces singular changes in
the overall probability distribution, Pr;la={p;}1.! To
see this, replace §(x) by

5c(x) =(x/2r)exp(— + x2x?);
then x— oo reproduces (2). Now follow the CCFS
analysis: Their Eqs. (5)-(8) remain valid if a is re-
placed by x and n(Q) by X, p;tanh(x%Ap;). For xA>>1
the Cauchy-Schwartz inequality' still yields a bound
x|A|'? on |dPr;[Y)/dik|. Then v=2/d follows' pro-
vided that a=x < oo. However, the model escapes the

inequality in the Mattis limit k— oo. It thus appears
that an appropriate disorder parameter, A, should yield
singularities in dPr\/d)\ no worse than § functions.

As to further applications it is clear that a critical
locus parallel to the A axis is not generic. If (dT./d\)r
#0 the transition can be undergone by the changing of A
and then &~ |A —A.| ~™ with v, = 2/d. Typically, the
transition will be universal along T.(1) and the A axis is
not special: Varying T at fixed A then yields ¢
~|T—T,| 7' with vp=v,=2/d. This should apply
to the usual spin-glass models.> When (d7./d\)7=0
the exponent vr need not meet the bound (but may well
do s0).

At a multicritical point, (Tp,An), with disorder new
features arise. Near (T,,An) one expects scaling to hold
with two distinct scaling axes and two correlation ex-
ponents, v; and v,, one for an approach along each axis.*
Generically, neither scaling axis is parallel to the A axis:
Then both vi and v, must obey the inequality. If the
second scaling axis is normal to the A axis one still has
v1 = 2/d; however, the second exponent need satisfy only
v2=2/md, where the full nonlinear scaling field* at
T=T,, varies as |A—An|™ (m=2,3,...). Atthed=3
Ising spin-glass/ferro/para multicritical point® we find
y1=3.0 from series extrapolation5 along the Nishimori
line: Provided n= —2.3, which is hard to doubt, this
implies v, > 2/d as required. On the other hand, Nishi-
mori estimates v7==0.51 £ 0.06 (and 2 —n==2.0) by the
Monte Carlo renormalization-group method.® This val-
ue for vr is permitted provided the second scaling axis is
parallel to the T axis3; otherwise it must be discounted.
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