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The "valence-bond" ground states for extended Heisenberg models discussed by AfHeck et al. are
shown to be of a Jastrow form. We discuss a striking analogy between these models and the "truncated
pseudopotential" approach to the fractional quantum Hall effect. The valence-bond states are in analo-

gy to the Laughlin ground state, and the magnon spectrum is deduced by use of a single-mode approxi-
mation.
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Recently, Affieck, Kennedy, Lieb, and Tasaki
(AKLT)' have discussed extended Heisenberg models
whose exact "valence-bond" ground states can be readily
determined. These models exist for lattices in any di-
mension, provided that the spin S is an integer multiple
of half the lattice coordination number. The interactions
are written in terms of projection operators for total
bond spin, and are polynomial functions of S; SJ. In
this Letter we shall discuss a striking analogy between
these antiferromagnetic spin models and the fractional
quantum Hall effect (FQHE).

Laughlin's theory of the FQHE is based on a set of
correlated wave functions of the Jastrow form, which are
purported to be good Ansatz ground states for the in-

teracting 2D electron gas in the lowest Landau level.
These trial states, which exist only when the filling frac-
tion v is an inverse odd integer, are exact when the in-

teraction is sufficiently short ranged. 3 Thus, the
coefficients in an expansion of the interaction v(r) in

terms of short-ranged "pseudopotentials" indicate rough-

ly how far the true ground state is from the Laughlin
Ansatz. In spin-S Heisenberg systems, the interaction
S; SJ can similarly be decomposed into total pair-spin
projection operators, and for certain values of S a Jas-
trow (valence-bond) state exists which is exact if only
certain projectors are kept. Furthermore, with a
knowledge of the ground-state correlations, the magnon
spectrum may be obtained in the "single-mode approxi-
mation. "

First, we briefly summarize the AKLT models, apply-
ing a more elegant formalism which permits us to write
for the first time the general AKLT state. Consider a
lattice of spin-S objects with rotationally invariant in-
teractions. We start by writing (S;.SJ ) as a sum over
projection operators PJ(ij ) for total bond spin J. One
knows that there are 2S+ 1 multiplets indexed by
J=0,1, . . . , 2S. Using S; S~ = —,

' (S;+SJ) —S(S+1)

and the completeness relation 1 =pp OPJ (ij ), one finds

2S

(S; SJ) = g b J(J+1)—S(S+1)] PJ(ij). (1)
J 0

This formula may be inverted, so that each projector
may be represented by a polynomial of order 2S in

S; SJ. We shall make extensive use of the Schwinger
boson representation of the spin algebra:

S„+=a„tb„, S' = —,
' (a„ta, b„tb„), —

(2)

in which each spin is defined by two bosons, together
with the constraint that the total Bose occupation n, +nb
is constrained to be twice S. In the subspace defined by
the constraint, one finds S,"SJ=- rietlev+S2, with

C;~=a;bJ b;aj. The AKLT—valence-bond states for an
arbitrary lattice X of coordination number z may be
compactly written as

~
ilt(L, M)) =Q (a;the bta~~)

~
0), — (3)

&ij)

where the product is over all bonds on X. There are
several important features associated with the state

) ilr(X, M)). First, it is an eigenstate of S„ for all n with
eigenvalue S —, Mz. Second, it is rotationally invari-

ant, and hence has total spin zero. Third, and most to
the point,

~
ilr(X, M)) has no projection onto the

J & 2S —M subspace for any bond. (J',„=2S—M
may be obtained by inspection, and J,„follows from ro-
tational invariance. ) Consequently,

~ itr(X, M)) is an ex-
plicit zero-energy ground state for any Hamiltonian of
the form

2S
H g g A P(ij ). .

+&

Correlations within this formalism are easily evaluated
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in a coherent-state Schrodinger representation. Within
the spin-S sector of the Schwinger boson algebra, we can
take a u, b v, a 8/(iu, b tl/tl v, with u

=cos(8/2)e+'~j, v =sin(0/2)e '~j . The inner product
becomes (f i g) =fd0f*(u, v)g(u, v), where the integra-
tion is with respect to solid angle. The operator S takes
the form —,

' (u tl„+ v 8„,), and thus every spin-S state is a

homogeneous polynomial in u and v of order 2S. In the
calculation of matrix elements of operators T(r1„,8„,;u, v )
which commute with S, the following prescription is use-
ful: First, write T in normal ordered form so that all
derivative operators appear to the left. T therefore
resembles T=QTklj a„"a,', u"'jv, -, One then replaces
gktll k+j I j b

k+I+1
*k„,*l k+, I —j

m 2

The general state of Eq. (3) has the Schrodinger rep-
resentation

y[u, v] =+(,j)(u;vj —v;u, )~,
(4)

i@i'=+(;,) —,
' (1 —0; 0, )~,

A

where 0 is a radius vector on the unit sphere. From Eq.
(4), one can easily calculate the spin-spin correlation
function (Sp S„)=(S+1) (Qp 0„) of the spin-S chain
via a transfer-matrix method (na0), yielding (Sp S„)
=(—1)"(S+1) (1+2/S) i" i, where we have taken
the chain to have free ends. The correlation length is

g =1/ln(1+2/S) and the static structure factor is

s,(k) =—g e -'""-"'(SSt')1
a + n

n, n'

= —'8 S+1 1 —cosk
1+cosk+ 2/S(S+ 2)

Note that s(k) is analytic in k and vanishes as k ~ 0,
in accordance with the fact that

i y) has zero total spin.
The wave function in Eq. (4) bears a remarkable

resemblance to the Laughlin state,

IIj ( k (ij ik ) exP

which describes the fractional quantum Hall condensate
at filling fraction v= 1/m (m odd). One can expand the
(lowest Landau level restricted) interparticle interaction
in terms of relative angular momentum projection opera-
tors: v(r; —rj) =gk p VkPk(ij ). For short-ranged po-
tentials in which Vk =0 when k ~ m, the Laughlin state
is the exact ground state and there is a gap in the excita-
tion spectrum. As Haldane has stressed, the success of
Laughlin's wave function for the Coulomb system is
dependent on the difference between the k =m —2 and
k =m pseudopotential components Vk. This suggests
that the Jastrow state of Eq. (3) is a good approximation
to the true ground state for spin-spin interactions in

which the coefficients of the projectors PJ for J)J,„
are relatively large. Consider, for example, the S=1
Heisenberg chain. From Eq. (1), we have S, Sj
= —2+ Pi' (ij ) +3P2 (ij ) .Recall that the state

i y(chain, M=I)) of Eq. (3) is the exact ground state
for a pure P2 interaction (in this case it is also nonde-

generate). The key point is that the coefficient of P2 is

greater than that of P i', and we suggest that the
difference is sufficiently large that the P&' component can
be treated perturbatively, without destroying the excita-
tion gap. Since the largest m =1 coefficients in Eq. (1)
occur for the largest values of J, it is natural to ask how
"close" the Heisenberg model is to the AKLT model;
later we shall return to this point.

While the correlation functions for chains are simple
to evaluate within the Schwinger boson formalism, the
properties of the Jastrow state in more dimensions are
not as clear. Much insight may be gained by an appeal
to the Laughlin plasma analogy. Interpreting the prob-
ability i Ijri as a Boltzmann weight e t of a classical
system, we obtain P =M/2 and @=—P(;j)21nsin —,

' 6;j,
with 6;~ =cos ' Q; Qi. Thus, N is the energy of a clas-
sical assembly of spins (unit vectors) interacting via

v(0) = —21nsin~ —,
'

0; this potential strongly encourages

spin antialignment on alternate sublattices. We now see
that these quantum mechanical systems are somewhat
unusual in that their ground-state correlations are ob-
tainable from classical models in the same number of di

mensions. This feature explains the difference between
the pure exponential behavior of the d=1 correlations
found above and the two-dimensional Ornstein-Zernike
(OZ) form ( —1)"

i n
i

' exp( —
i n i/g) which is ex-

pected to describe the asymptotic correlations in the
quantum S=1 Heisenberg chain. The correlations in

the Jastrow state i y(X, M)) are thus equivalent to those
of a classical modified Heisenberg model on X. The
temperature T =2/M =z/S and dimensionality d should
determine whether the spins are locked in a Neel phase
(large S), or "disordered" (small S). A crude mean-
field theory follows by our approximating 2 ln —,

' (1
—0; 0 j ) = —(1+0;.0j) and taking (0) =to, lead-

ing to the mean-field equation to =coth(Scp) —(Stp)
for which the "critical' spin is S, =3. This transition is

valid only for d &2. In dimensions d(2, the ground
state will be disordered for all S, the correlations will be
of the OZ form ( —1)"in' ' exp( —in i/g), and
the magnons discussed below will evidence a gap. Ap-

pealing to universality, we predict that the correlation
length for the large-M Jastrow state should be identical
to that for the classical Heisenberg model at T=2/M,
with ((M) -M/2 in d =1 (as explicitly calculated
above), and ((M) —exp(xM) in d =2.

Excitations. —The Bijl-Feynman single-mode approxi-
mation (SMA), used with great success in deducing the
phonon-roton curve in liquid He, has also proved ex-
tremely accurate in its extension to the magnetophonon-
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Ik)=S& IG) =W-'"g, e'" "'S'I G). (6)

[The choice S' in Eq. (6) is arbitrary; the magnon
branch will be threefold degenerate. ] The putative exci-
tation energy is

magnetoroton excitation spectrum in the FQHE. In
both instances the approximate ground state is of the
Jastrow form. We now extend the theory to spins.
Given a Hamiltonian H=+1;j1Q(S; S~) where g is an
arbitrary polynomial function of its argument, and the
exact ground state I G) (assumed to be normalized and
of total spin zero), one constructs a candidate excited
state at wave vector k by

The (normalized) second moment of S(k, co) is given by

~ OO

r12=— „dcoS(k,co)(co —
co1,) 2

(kII)
(io)

If, in the solvable S =1 chain, the second excited state at
k =x consists of three elementary k =z magnons with no
negative binding energy (this has been confirmed numer-

ically), then a variational principle' gives that if
O~ I 2~ —,

'
co, (where cok is the SMA energy), then the

exact k =x gap h, satisfies

, &G I
[S'-~, [H,S~]] I G&

co), —E),—Eo= 2 « Is' &S~ I
G

(7)
either —,

' co,+ —,
' (co, —3I,)'t ~ A~ co„,

or 0~a~ —', co ——'(co' —31')' '
and is a rigorous upper bound to the gap at wave vector
k. The gap is written as a ratio co1, =f(k)/s(k), where
s(k) =s„(k)= —,

' s„(k) is the static structure factor,
and f(k) is the oscillator strength:

f(k) = —,
' (G I

[S' 1„[H,S1',]] I G) = —,
'

Dy1„

D = —,
' (G I [S Sf, [Q—(S; SJ ),S; SJ'] ] I

G)—,
(8)

where (ij) is any nearest-neighbor pair and y1, =+q(1
—e '" ) is a sutn over nearest-neighbor vectors. With
the assumption of inversion symmetry, f(k) vanishes as
k at long wavelengths. This proves gaplessness at the
zone center if s (k) vanishes more slowly than k, and at
any point in the Brillouin zone where s(k) diverges.

In spin chains where S is half an odd integer, Haldane
has predicted that (S13 S„)- ( —1)"

I n
I

'+ 8 (n ),
in which case s (k ) vanishes linearly at the zone center
and diverges logarithmically at the zone edge, in agree-
ment with the commonly held belief that the spectrum is
gapless at these points. The integer-S case is much
different, and s(k) is predicted to be analytic in k, giv-

ing a gap everywhere with a minimum at the zone edge.
For the exactly solvable H =Q„P2 (n, n+ 1) model, we
find f(k) = —,", (1 —cosk) and s(k) =2(1 —cosk)/(5
+3cosk), yielding a magnon dispersion of cok = —,', (5
+3cosk) and an upper bound on the k=n gap of

27 0.370. Numerical work by one of us ' on
finite-sized ( ~ 12 sites) chains yields a remarkably
size-independent gap of 5=0.350 and furthermore
verifies that the SMA dispersion is essentially exact
throughout the region 2 z ~ k ~ n. "

Writing the dynamic structure factor as

&.t «,~) =X,«IS' ~ IJ&(J Is( IG»(~ —~, ), (»

with co~ =E~ —Eo, one sees that the oscillator strength

f(k) in Eq. (8) is the exact first moment of
S(k,co)=—

& S„(k,co). It is easy to derive sum rules re-
lating higher-order to ground-state correlations as well.

For this Hamiltonian, we construct the dimerized trial
ground state

I 1tc) =Q„(ej„„)~+(ef„„,) I o), (i3)

where p = —S, —S+ 1, . . . , S, and where S is an integer
or half an odd integer. I 1tc) describes a spin-S chain, and

the variational parameter p is determined by our minim-

izing the energy per spin,

= —(S+1)'+2(S+i)'
N (S+2)'-p' '

(i4)

yielding p
* = (S+2) [1 —(1 —

A. ) 't ]/X, where p
* must

of course be rounded off to the nearest allowed value.
The correlations decay exponentially with (=2/in{[(S
+2)2 p2]/(S2 p2)] 13

How well do the AKLT models approximate more
realistic (e.g. , pure Heisenberg) models~ As mentioned

by AfAeck et al. , employment of the (d = 1,S =1) AKLT
state as a trial Heisenberg-chain ground state gives an

energy within 5% of the numerical value. One might
further suspect that the SMA formula of Eq. (7) would

yield an acceptable approximation to the gap, even

though the AKLT state is not the exact ground state.
However, one finds that the SMA expression yields a

We find I k
——,",, (5+ 3 cosk), giving either 0 ~ 6

~ 0.169 or 0.325 ~ h, ~ 0.370, which agrees nicely with
numerical results. The SMA is so named because it
amounts to our approximating S(k, co) = s(k)B(co —

co1,).
Within the SMA, the spin susceptibility is

X.,(k) =2„@.,(k, ~) = 2a., „. (i2)dco s(k)
CO

Because of the large susceptibility at the zone edge, spin
chains have a tendency to dimerize in the presence of a
staggered interaction such as

Hd =g, {1+( —1)"US„S„+1.
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value about twice too large. In two dimensions, it has
been proven " that for S» 2 on a honeycomb lattice
and for S» 1 on a square lattice, Neel order exists in

the Heisenberg ground state. Yet we have shown above
that the AKLT-state correlations are short ranged for
d ~ 2t In this regard, it is worth emphasizing that the
peculiar "reduced dimensionality" OZ correlations men-

tioned above arise because of the special form of the in-

teraction. As one moves away from the AKLT points in

the space of models by turning on the "disallowed" pseu-
dopotential components AJ where J~ 2S —M, a cross-
over to the expected (4+1)-dimensional OZ form will

occur. If one strays far enough, a phase transition may
occur, as happens in the case of the d=2 Heisenberg
models discussed above. In one dimension, there also ex-
ist extended Heisenberg models with broken-symmetry
ground states, but it appears that for the pure Heisen-
berg model, the AKLT states may be a good starting
point for perturbation theory in the range of the interac-
tion. Recently, one of us has shown explicitly how this
dimensional crossover occurs in the vicinity of the
(d=1,S =1) AKLT point by expressing the diQ'erence

0—HAKLT in terms of SMA magnon operators. '
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