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Mechanism for Superuniversal Behavior in Certain Stochastic Systems
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The problems of a directed polymer in a random matrix, a randomly stirred fluid obeying Burgers s

equation, and the dynamics of an interface growing by vapor deposition can be mapped into each other.
Renormalization-group arguments suggest that there is an upper critical dimension for these systems
above which the correlation-length exponent v should be 2 . We present an argument which suggests
that n —, in all dimensions (that is, it is superuniversal), in agreement with the conjecture and numeri-

cal simulations of Kardar and Zhang.

PACS numbers: 64.60.Ak, 05.40.+j, 81.15.Jj

The seemingly disparate problems of a directed walk
on a random lattice, ' the growth of an interface due to
vapor deposition or following an Eden-model growth
law, and a randomly stirred fluid whose hydrodynamics
is approximated by Burgers's equation are all
mathematically equivalent to each other and examples of
systems for which the conventional renormalization-
group (RG) approach fails completely. ' Because of the
mappings between these problems it is only necessary to
outline our calculations in detail for just one of them,
which we choose to be that of the directed walk on a ran-
dom lattice.

A directed walk on a lattice is one in which no reverse
steps are ever taken along a particular direction, called
the longitudinal direction. Suppose the directed walk
starts at the origin and ends after t steps have been taken
along the longitudinal direction. Then a typical displace-
ment t x t, where x is a (d —1)-dimensional vector in the
transverse directions, scales as t", with v —,', for all di-

mensions d, as would be expected for a random walk.
The walk in the presence of quenched random disorder,
such as might be provided by some missing lattice bonds,
can be mapped in any dimension onto the randomly
stirred Burgers equation of hydrodynamics. For d=2,

this is exactly solvable and gives v —,
' . Conventional

RG calculations' suggest that there is the upper critical
dimension in the presence of disorder and that v= —,

' for

all d) 3. However, numerical transfer-matrix calcula-
tions by Kardar and Zhang' (KZ) gave v=0.62~0.04
for d 3 and v 0.64+ 0.07 for d 4, suggesting that
the value —', for v might be superuniversal, i.e., the same

for all dimensions. Here we introduce a mechanism

which shows how superuniversal exponents could arise,
and using a simple analytic argument based on replica
methods, we obtain the superuniversal value of —', for v.

The problem of a directed walk on a random lattice is

related to that of a directed polymer (possibly a polyelec-

trolyte according to KZ) in a random matrix. (Self-
intersections are unlikely and irrelevant for a directed
walk because of the "stretching" along the longitudinal

direction; a self-avoiding directed walk in the absence of
a disorder has v —,

' for all d. ) The transverse displace-

ments in the presence of quenched disorder are related to
the conformations of the polyelectrolyte in a frozen gel
matrix.

The partition function Z(x, t) of all directed polymers

joining (0,0) and (x, t) can be expressed as the path in-

t

tegral'

2
+ (x,t) ~t d t

Z(x, t) D'x'(t')exp — dt' +
~ (0,0) 4 2 dt'

The continuum limit has been taken in Eq. (1). The
term involving y is an "entropic" contribution arising

from the chain connectivity while the term in p( tx')

arises as different conformations of the chain which pass

through different "impurities" have differing energies.
Following KZ, we shall assume that

+p(x', t ')

BZ/Bt =[(y/2)V'+it(x, t)]Z. (3)

t

�=a
h" '(R). An alternative to performing the path in-

tegral of Eq. (1) is to solve the non-Markovian diffusion

equation

&p(x, t )p(x', t ')), =b(t —t ') V(x —x'), (2) When p(x, t) =0, i.e., without the disorder,

where the c denotes a configuration average over impuri-

ty positions, etc. All V(R) which decay to zero on the
cutoff (lattice spacing) length scale would be expected to
be in the same universality class. KZ set V(R)

Z(x, t) -t '" "'exp( —x'/2yt), (4)

which implies (x ) =yt. Hence v= —,
' in the absence of

impurities. In the presence of a quenched distribution of
impurities one expects that for a typical impurity distri-
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'dh/8t = —,
'

yV h+ —,
' ).(Vh) +(y/X)p(x, t). (6)

This describes the fluctuations of a growing interface in
a ballistic deposition process. Setting v= —XVh, one
has the Burgers equation

c)v/c)t + (v V)v = —,
'

yV v —yV p (x, t ) (7)

for a randomly stirred vorticity-free (Vx v =0) fluid.
Forster, Nelson, and Stephen performed a perturba-

tive dynamic RG calculation starting from Eq. (7) for

bution

Z(x, t )-t ' ""g(x/t ")t" ' exp( f—t),

where f is the polymer free energy per step in the longi-
tudinal direction and y is here the "susceptibility" ex-
ponent. In order to calculate f we must average the
logarithm of Z(x, t) over the impurities (rather than
Z(x, t) itself] so as to obtain results representative of a
typical impurity distribution.

The nonlinear transformation Z(x, t) =exp[Eh(x, t)/
y] gives the equation

the eifective coupling constant g=2o /y [where o
=(p(x, t) ),] which gave to one-loop order the equation'

dg/dl = (3 —d)g+ Cd- |&d—ig,

where Kd=Sd/(2rt) and Cd &0. For d(3 the only
fixed point of Eq. (8) is the Gaussian fixed point g* =0,
which is unstable. This implies that disorder is relevant
and that flow is towards a strong-coupling regime. For
d & 3 the Gaussian fixed point is stable, which would
normally be taken as an implication that disorder is ir-
relevant and hence that v= —,', d & 3. It is noteworthy
that Eq. (8) has an unstable fixed point when d & 3,
which could imply the existence of a strong-coupling re-
gime for g& g*(WO). The conventional RG discussion
seems unable to describe the strong-coupling regime.

However, progress is possible if one uses the replica
method to calculate first the average of lnZ,

(lnZ), = lim [(Z"),—1]/n.
n 0

n copies of the polymer are generated and the average
performed over the p (x, t ). One finds

2
t (x,r) wl dxa(Z"(x,t)), =„+D'x.'(t')exp — dt' +g ' —g V(x.'(t') —xp(t'))"to &a-1 " 2 a dt' a&p

+o-exp
' —rc g !x, —xp! (i2)

and gives for the energy of this n-body bound state

Eo(n) = —(y/6) rc n(n —1), (i3)

and so f= ylc /6. When d~2, we cannot find the
ground-state wave function %'o(xi, x2, . . . , x„) or the en-

ergy analytically. However, we will now argue that for n

large and V(R) & 0, all R, the ground state is an n-body
bound state, even for potentials which do not produce a

Evaluation of this path integral is equivalent to our solv-

ing the (d-1)-dimensional n-particle Schrodinger equa-
tion with Hamiltonian

c12
H, = —+g

2
—g V(x, —xp).

a BX a&p

The potential-energy term represents an attractive in-
teraction between the n particles. The free energy f of
Eq. (5) is related to the ground-state energy Eo(n) of
H„by f=ED(n)/n, n~ 0.

In general, the n-body problem posed by Eq. (11) is
intractable. However, for the case when d =2 and
V(R) =cr28(R), it is possible to calculate the ground-
state wave function and energy exactly. For n =2, the
ground-state wave function is -exp —~!xi —x2!. The
discontinuity in the wave function as the two particles
cross is matched to the strength of the attractive 6-
function interaction and fixes 2yic=cr2. This generalizes
in the n-body case to

!
two-particle bound state.

We begin by constructing a trial wave function of the
form

% (xl, x2, . . . , x„)= / y(x. —X),
a 1

where X = (1/n ) (xl +x2+ . +x„) is the center-of-
mass coordinate. Taking the p to be normalized, we see
that the kinetic-energy term in (0!H„!O) consists of n

equal contributions each of which is the kinetic energy
associated with the one-particle wave function. Similar-

ly, the potential energy consists of —,
' n(n —1) equal con-

tributions. Suppose for concreteness we take V(R) to be
a potential well of linear dimension a and strength
a a . Then we can choose the trial wave function so
that the potential-energy contribution is of the order of
—cr n(n —1)/a . Clearly, for large enough n the poten-
tial energy will dominate and the ground state will be an
n-body bound state. We shall therefore proceed on the
assumption that one should determine the ground-state
energy for n large and analytically continue that expres-
sion for Eo(n) to n =0. Of course, it may be that for
some smaller value of n a ground state of, for instance,
(n rn) and rn body boun—d s-ta-tes is favored. There-
fore, our assumption is equivalent to the assumption that
replica symmetry holds.

To determine the exponent v it is convenient to add to
H„a term —cg,"-18(x,'): x,' denotes the first com-
ponent of I,. Physically such a term corresponds to a
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layer of attractive impurities in the x'=0 plane which
tend to pin the polymer in that plane. It will localize the
n-body bound state in the vicinity of the hyperplaneX:—g, x,'ln =0. Such an attractive interaction adds a
singular term of the form c'~ ' ' to the polymer free
energy f(c), i.e.,

duced temperature. However, for c &0, the extra term
in the Hamiltonian, which should behave like a slightly
altered layer of exchange bonds in the magnetic system
analog, acts to reduce the free energy by an approximate
amount ce'', for small c. Therefore, the total change
in the free energy due to the fluctuation is

f(c) —f(0)- —c'"' ', c&O, c—O. (i4) BF E ( Cc E (E c)

Hence if we can determine f(c) we can evaluate v.
In order to see how the relation (14) comes about, let

us first recall one of the well-known relationships be-
tween the statistics of polymers on a lattice and magnetic
critical points. Suppose we form the generating function
Z(T) by running over all the directed walks of t steps on
the lattice via

E(T) =pi Q, Z(x, t) (J/kaT)'.

This generating function is analogous to the susceptibili-
ty of the magnetic system. It will diverge at the critical
temperature T„which, with use of Eq. (5), is given by
In(J/kaT, ) f. We shall discuss below how the addition
of the extra term to the Hamiltonian shifts T, in the
magnetic system according to T, (c) —T, (0)~c'/t'
for small c & 0. This, together with the identification of
f, leads to (14).

The formula for the shift in T„ for small c, has been
proved rigorously by Diehl, Dietrich, and Eisenriegler;
however, the result may be obtained by the following
heuristic argument. ' Consider a fluctuation which
tends to order the system near the hyperplane X=o.
The spatial extent of the fluctuation is governed by the
correlation length g and it will lead to an increase in the
bulk free energy by an amount e 'g, where t. is the re-

n

V= —c g 8(x,') —nB(X)
a 1

The center-of-mass motion in the L direction can be
separated out from H„ to yield

H, = —(y/2n) 8'(AX') ncb(X—)

The lowest eigenstate of this Hamiltonian is a bound

state of energy —n c /2y and eigenfunction Jk
xexp( —XIXI), where ) =n c/y. Thus the ground-
state wave function of H„,

I o) =~~exp( —~ I
X

I )+p(», x2 (2o)

has energy

E„(c)=Ep(n) nc l—2y. (2i)

The "perturbation" V gives contributions to the ground-
state energy only of order c . To first order we have

Thus the critical temperature at which the fluctuation is

energetically favored is given by e, '-c or T, (c)
T (0) I/(1 —v)

The replicated Hamiltonian, including the modified-
layer contribution, can be written as a sum of two terms,
H„+ V, where

H„=H„—ncaa (X),

(oI vIo) =~„Q.d'x. [i —2~IxI+ ]op(x, , x,, . . . , x„)v, (22)

where the exponential in Io) has been expanded out to
order c. The terms in Eq. (22) of order c2 cancel. This
is a consequence of the translational invariance of
+p(xl»2 ~,x„); adding a constant vector a to all x,
leaves +0 unchanged. The leading term is then of orderc: v1z. 7

2(n'c'/y')„ II.d'x.
I X I+o'(x|,x2, . . . , x.)g.~(x')

The second-order term in V, —g (0 I
V I m) /[E—E„(c)l, where I m) and E denote the mth excited

eigenstate and eigenvalue of H„, also gives contributions
of order c to the ground-state energy. Each matrix ele-
ment (OI VI m) is, at most, of order c / . The sum over
m is convergent even when E —E„(c)is replaced by its
c =0 limit. These statements have been verified explicit-
ly for the "solvable" case of d =2. Third-order terms in
V give only contributions higher than c . Thus if
Ep(n, c) denotes the ground-state energy of the full

Hamiltonian H„+V,

Ep(n, c) =Ep(n) nc /2y+—O(c ), (23)

which implies that f(c) —f(0) = O(c ) and so, with Eq.
(14), that v —', . Notice that for c & 0, that is a repul-
sive surface layer of impurities, no surface bound state
would form and Ep(n, c) =Ep(n) for all c & 0.

The essential features of our calculation are (i) the
vanishing of the contribution of the c term in f(c) be-
cause of the n dependence of the c term in Ep(n, c)
and (ii) the assumed existence of a c term in Ep(n, c) of
the form nc D(n, c) where D(0,c) is nonzero and finite
as c 0. The first feature should obtain for any dimen-
sion provided that replica symmetry holds and implies
that v& 2 . The second feature is crucial for the predic-
tion of the superuniversal value for v of 3. D(n, c)
presumably has these features for d=2, since with these
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assumptions one recovers the known exact results. An

exact calculation of it is very difficult in general dimen-

sionalities, as this requires complete knowledge of
~
m)

and E . From an inspection of our perturbative expres-
sions, we expect that D(n, 0) is nonzero and finite. How-

ever, it does remain possible that the perturbation expan-
sion breaks down in the n =0 limit. For instance it could
be that D(0,c)-c ~ for d&2, which would imply a
breakdown of superuniversality [but not necessarily
v= —,

' unless p(d) =I]. Such a possibility might explain
the very recent numerical simulations of %'olf and
Kertesz, " who claim that v(d=3) =0.60 and v(d=4)
=0.57. However, the approach to the strong-coupling
fixed point away from the unstable fixed point may be
slow, making the numerical determination of v difficult.
Should it 6nally emerge that v is not really superuniver-
sal, then the calculation of D(0,c) offers a means of
determining v. Within the field-theoretic approach of
Ref. 3, there is no obvious way of even starting such a
calculation for d ~ 3.

It has been suggested by KZ that, at least for d & 3,
there exist two regimes —a strong-coupling regime with

v 3 and a weak-coupling regime where v =
2 ~ Our

calculations make this a very plausible scenario. Sup-
pose for d & 3 that V(R) is indeed the square well of
depth —cr /a . Then for n =2, unless o exceeds a criti-
cal value a„no bound state exists. The form of the
ground-state energy, Eo(n, c), as n 0 would hardly be
expected to follow the large-n result in this case. Indeed,

if the continuation followed a branch characterized by
the nonexistence of a bound state, we would expect a
term nc in Eo(n, c) arising from the interaction of each
of the n nonbound particles with the plane, which would

imply v= —,'. On the other hand, should a & cr„a
smooth extrapolation to n =0 could exist. It is less clear
how universal these arguments are: Do all reasonable
potentials give rise to a critical coupling o, ? Further in-

sights on this problem would be most useful as they
would probably have relevance in other contexts.
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