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We report the first observation of Bragg scattering of sodium atoms from a standing light wave. We
also present a theory which quantitatively predicts the amplitude of the various Bragg orders as a func-
tion of the light's detuning and power, and the interaction time. The analog of the Pendello'sung eff'ect,
previously observed in Bragg scattering of neutrons from crystals, is predicted and qualitatively observed
for first-order Bragg scattering of atoms from a standing light wave

PACS numbers: 42.50.Vk

Bragg scattering of x rays from crystal planes was
demonstrated by W. H. Bragg and his son W. L. Bragg
in 1912, in a series of experiments' which won them a
Nobel prize in 1915. Bragg scattering of neutron de
Broglie waves from crystal planes was first observed in

1946, leading to the Geld of neutron interferometry.
This Letter presents the first experimental observation of
Bragg scattering of atoms from a standing light wave.
This observation provides a beautiful example of the
complementarity of particles and waves in that we treat
the atomic beam as a wave and the intensity maxima of
the standing light wave as crystal planes. Our observa-
tion also represents a breakthrough in the coherent ma-
nipulation of atoms, completing the technology necessary
to construct an atomic interferometer (i.e., one which
acts by interference of atomic-matter waves).

Momentum transfer to atoms by light in the absence
of spontaneous emission results from an interaction of
the induced dipole moment of the atom with the field
gradient of the standing light wave. Quantum mechani-
cally, the atom trades a photon via absorption and stimu-

lated emission between the counterpropagating traveling
waves which compose the standing light wave, thus gain-
ing momentum in discrete units of 26k, along the k vec-
tor of the standing light wave. One can also view this
phenomenon as diffraction of an atomic de Broglie wave

(Ada =It/p) from the intensity grating (periodicity
dl;sbt A, l;sbt/2) of the standing light wave. Thus, con-
structive interference occurs at discrete angles given by
p=kdtt/dl;sh, which again results in momentum transfer
to the atom in discrete units of 26k.

The difference between Bragg scattering, in which the
atoms scatter mainly into one order (i.e., final momen-
tum state), and the previously observed Kapitza-Dirac
scattering, in which a large number of momentum
states are populated, results from energy-momentum
conservation. The absorption and stitnulated emission of
photon pairs changes the momentum but not the labora-
tory kinetic energy of the atom. The final momentum
vectors must lie on a circle of radius p; in momentum
space as shown in Fig. 1. The focused waist of a Gauss-
ian light beam has a minimum Heisenberg uncertainty
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FIG. l. Comparison of Kapitza-Dirac and Bragg scattering. A tightly focused waist (left) has a large angular uncertainty in the
direction of its photons, thus allowing energy conservation for many final momentum states pf—this is the Kapitza-Dirac regime.
The observation of Bragg scattering requires a much larger waist for the light where the photons are highly collimated. In this case,
the only process which can conserve energy and momentum is Bragg scattering (right).
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between the rms waist size Aw and the rms angular
spread A4I of the k vectors of photons traveling through
this waist, hwhp=hwhkhg=t1/2. For the previously
observed Kapitza-Dirac scattering, the standing light
wave was focused very tightly (Aw =50 pm) so that the
angular uncertainty in the k vector of the light was much
greater than the angle p=kda/dI;sht between diA'racted

orders. Consequently, the atom could scatter into many
diferent orders and still conserve momentum and ener-

gy. The diff'raction patterns remained symmetric about
the initial atomic trajectory even when this trajectory
was angled with respect to the nodes of the standing light
wave. '

To observe Bragg scattering, the angular uncertainty
of the photons must be less than the angle &=60 grad
between diÃracted orders, implying a minimum waist
size for the standing light wave, Aw=3 mm. As shown

on the right of Fig. 1, the only process which can con-
serve both momentum and energy is scattering in which

the incident angle satisfies the Bragg condition, mkdn

=2dI;sI, t sin8, where m =1,2, 3, . . . is the order. The
Bragg condition allows momentum transfer only for
discrete initial values of atomic momentum p„mhk
along the k vector of the standing light wave, with

transfer only to the state p„= —mhk.
Our experiment was done with the high-resolution ap-

paratus used previously to observe Kapitza-Dirac
diA'raction of atoms by a standing light wave. A
monoenergetic sodium beam (hv/v =11% FWHM) is

optically pumped into a pure, two-state system and then
collimated with two 10-pm slits spaced 0.9 m apart. The
standing light wave in the interaction region is construct-
ed by retroreflection of a laser beam from a mirror. The
angle 8 between the atomic beam and the standing-
light-wave nodes can be varied by means of a lead zir-
conate titanate lever arm on the mirror. The final
momentum distributions of the atomic beam are detected
1.2 m downstream from the interaction region by a 25-
pm scanning hot-wire detector. The momentum resolu-
tion of this apparatus is 0.9hk (FWHM).

Experimental data of first-order Bragg scattering are
shown in Figs. 2(a) and 2(b). When the interaction
laser is blocked, all atoms are in the undiffracted state

p =06k. When the interaction laser is unblocked and
the retroreflecting mirror positioned at an angle of 30
grad with respect to the atomic beam, most of the popu-
lation transfers to the diff'r acted momentum state

p = —26k. For a constant detuning of the light beam,
the population in this state first increases and then de-
creases with increasing laser power, with most of the
population returning to the undiffracted state. Higher-
order Bragg scattering has been observed for orders
m =2, 3, and 4. Figure 2(c) displays data of second-
order Bragg scattering.
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FIG. 2. Experimental data of Bragg scattering. (a) First-
order Bragg scattering: P=6 mW; h, 800 MHz; r 6.4 ps
(hw-3. 2 mm). (b) First-order Bragg scattering: P 10 mW;

800 MHz; r=6.4 ps. (c) Second-order Bragg scattering:
P-4 mW; 6-500 MHz; r-3.2 ps (hw-1. 6 mm). The angle
of the standing-light-wave nodes with respect to the atomic
beam was 30 p.rad times the order, m.

Although there have been many theoretical papers on
momentum transfer to atoms by light, " the theoretical
treatment of Bragg scattering has only been treated in
detail in Refs. 5 and 11. The theory for Bragg scattering
of a two-state atom from a standing light wave with
Gaussian field profile f(t) =exp[ —(t/r) ] follows from
an extension of the theory given in our previous pa-
pers. We observe the interaction from the frame of
Fig. 1 that sees equal frequencies in the counterpro-
pagating light beams. The Schrodinger equation would

appear as in Ref. 7. To account for the initial momen-
tum of the atomic beam, we expand the ground-state
probability amplitude as

a (t) =e'"' "ga „(t)e'"'"

with initial conditions no=p„/hk and a| „(t= —~)
=8„p. In these expressions, p is the initial momentum
of the atom along the k vector of the standing light wave.
It is important to note that np need not be an integer. In
the regime where the detuning h, is much greater than
the spontaneous linewidth and the peak traveling-wave
Rabi frequency Oo, the excited-state amplitude is small
and may be eliminated yielding

lani tI of (, t )/4hl (a 1 „-2 +2a i „+a i „+2) + l h k (n +no) /2M] a i „,
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where a& „(t) is the probability amplitude for the ground-state atom to have momentum p„=nhk .A unitary transfor-
mation

~E

a ~,„=b~ „exp —inn/4 —(i 0p/2t). )„ f (t ') dt '

results in a Raman-Nath equation' '
b~ „=[Qpf (t)/4A](b& „2—

b& „+z)—[ihk (n+np) /2M]b~ „.
The energy levels of the ground-state momentum

states indicated by Eq. (2) are shown in Fig. 3; they fall
along a parabola. The initial condition, np, is experi-
mentally controlled by the angle between the atomic
beam and the standing wav-e nodes [np p„/hk =8/
(hk/p;) =8/(30 prad)]. First-order Bragg scattering
(np= —1) can be viewed as an absorption and stimulat-
ed emission process from the undiffracted (n+np —1)
to the diffracted (n+ n p 1) momentum eigenstate.
Second-order Bragg scattering (np —2) can be viewed
as two absorption and stimulated emission processes
from the n+ no —2 to the n+ no 2 momentum state
via the nearly resonant n+no 0 state. In general, there
will be an energy resonance between the initial state

!
n 0 and the state n —2~no~. All other states are
nonresonant but may be excited in our experiment be-
cause of transit-titne broadening resulting from the
Gaussian profile of the standing light wave (d, v =90 kHz
FWHM for our waist parameter of r =6.4 ps).

Although Eq. (2) has no general analytical solution, '

a few approximations yield an analytical solution for
first-order Bragg scattering. If population transfer is
limited to the transition n+np= —

1 n+np 1 [i.e.,
the set of n equations (2) is truncated to n+np 1

and n+ n p 1], then the equations are homomorphic
with the rate equations describing a two-level system.
Consequently, the probability of our finding the atom in

the diffracted momentum state (n+np =1) is

Q2 oo 2 &/2-

~«=~)=~b),2(t=~))'-sin' ~" f'(t)dt =sin'
4g 4 —oo

, 4~ 2 (3)

g(np)- 1

To account for the finite momentum resolution of our
apparatus as well as the effects of population transfer to the initial condition
the nonresonant neighboring momentum states, the set of
equations given by Eq. (2) was numerically solved with (n p+1) '

2(an )'
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FIG. 3. Energy levels of the momentum eigenstates deter-
mined by their respective kinetic energies; E„(n+np) x(25
kHz). First-order Bragg scattering (dashed lines) can be
viewed as a two-photon transition from the undiffracted
(n+np= —I) to the diffracted (n+np=l ) state. Second-
order Bragg scattering (dotted lines) can be viewed as two
two-photon transitions from the undiffracted (n+no= —2) to
the diffracted (n+np 2) state.

where hn0=0. 38 is the momentum resolution of the ap-
paratus. The finite resolution of the apparatus leads to
diminished probability of transfer to the diffracted state,
although the probability of transfer to the diffracted
state still varies sinusoidally with power and maximum
momentum transfer still occurs when (Opr/4h)( —,

' tr) '~

= —,
' n. The numerical solutions displayed negligible pop-

ulation transfer to the neighboring nonresonant
n+np= —3 and n+np=3 states for the interaction
times used in the experiment.

The population of the diffracted momentum state pre-
dicted by this theory is shown in Fig. 4 as a function of
laser power (~Qpr) for first-order Bragg scattering.
Also shown are experimental results of the diffracted-
state population for various laser powers. The experi-
ment agrees qualitatively with theory in that the func-
tional form of momentum transfer as a function of laser
power (for constant detuning) seems correct. However,
imperfections in the experimental apparatus (e.g. , polar-
ization imperfections and light-beam aberrations) lead to
a reduction in the amount of momentum transfer to the
diffracted state and also from the diffracted state back to
the undiffracted state. Although spontaneous decays
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displays an atomic "beamsplitter" —a device which
coherently splits an atomic de Broglie wave into two spa-
tially distinct waves. One can reflect these beams and
then recombine them with another Bragg-scattering in-
teraction region, thus constructing a Mach-Zender atom-
ic interferometer. This device could be used to measure
the ground-state phase shift of an atomic beam, due to
electric, magnetic, or gravitational fields, blackbody radi-
ation, the Casimir shift, 's scattering from atoms (where
the real part of the forward scattering cross section could
be measured), or rotation of the interferometer (Sagnac
effect).

FIG. 4. Plot of probability to be in the diffracted
(n+np= 1) state as a function of laser power, AJz, for first-
order Bragg scattering (np —1): 5 800 MHz and z 5 ps
(Aw 2.5 mm) for these plots. Also shown are experimental
data of population in the diffracted state for various laser
powers.

were suppressed by detuning far from resonance (the
average number of spontaneous decays N ~ 0.1 for these
experiments) the residual spontaneous decay could ac-
count for some of the discrepancy between theory and
experiment at the highest powers. Measurements of
diffracted population versus light power done at different
detunings agree qualitatively with theory in the same
manner as shown in Fig. 4.

The measurements shown in Fig. 4 display the
Pendello'sung effect, previously observed in Bragg
scattering of neutrons from crystals. ' For Bragg
scattering of neutrons from crystals, this effect results in
a sinusoidally varying probability between the diffracted
and undiffracted waves as the length of the crystal
(which has a fixed potential) is increased. For first-order
Bragg scattering of atoms from a standing light wave,
the Pendellosung effect results in a sinusoidally varying
probability between the diffracted and undiffracted
atomic waves as the power (ce Qoz) of the standing light
wave is increased as noted above.

The observation and control of Bragg scattering of
atomic waves will be useful for the development of an
atomic interferometer. ' Scan (a) of Fig. 2 basically
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