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Computer Simulation of Ion Clouds in a Penning Trap
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Motivated by recent experiments, a series of molecular-dynamics simulations of ions confined in a
Penning trap have been performed. The temperature T and the density no are such that the correlation
parameter I is large (I e /akT, where 4tta /3 no). However, because of the relatively small size of
the ion cloud, results differ considerably from previous studies of unbounded systems. The ions form
concentric spheroidal shells, but diffuse freely on the shells. As I increases, diffusion decreases;~nd a
distorted 2D hexagonal lattice forms on the outer shells.

PACS numbers: l .50.Vk, 36.40.+d, 52.25.—b, 64.70.—p

In a recent series of experiments, ' a collection of N
ions (where N=100-1000) were stored in a Penning
trap and cooled to very low temperature (T=1-10mK).
One expects these ions to be strongly correlated since the
coupling parameter I is larger than unity.

The relatively small number of ions used in the experi-
ments makes the system ideal for molecular-dynamics
(MD) simulations with realistic boundary conditions.
We have performed such simulations for N 100 and
N 256 in the large-I regime and have seen behavior
quite unlike that observed in simulations of an unbound-
ed homogeneous system of ions. These latter simula-
tions predict a liquid phase for I =2 and a transition to a
body-centered cubic lattice for I =170. In contrast, we
observe that at large I the system of ions arranges itself
into concentric spheroidal shells. However, the ions
wander randomly over the surface of the shells. The sys-
tem might therefore be characterized as a crystal in the
direction perpendicular to the shells and as a liquid on
the shells; similar behavior is observed in smectic-liquid
crystals. As I is further increased, diffusion decreases
and a 2D hexagonal lattice forms on the outer shells.
However, the lattice is imperfect and diffusion persists
even for I =300-400. A 2D hexagonal lattice on cylin-
drical shells was observed previously by Rahman and
Schiffer in a simulation designed to model a system of
ions in a storage ring. These authors also considered
spherically symmetric potentials as a test of the effect of
boundary conditions on their model. While space does
not allow for a detailed comparison, their results are con-
sistent with those presented here.

Our MD code is novel in that it is based on guiding-
center equations of motion. We will 6rst discuss the ad-
vantages and range of applicability of the code, and then
we present the results of the simulations.

In the experiments, a strong magnetic 6eld is applied
to con6ne the ion cloud, and this 6eld makes a straight-
forward simulation difficult by introducing a small time
scale and a small length scale: the cyclotron period and
the cyclotron radius. To overcome this difficulty, we
average out the cyclotron dynamics, replacing the exact

equations of motion by guiding-center equations of
motion. The idea here is that for a sufficiently strong
magnetic field the cyclotron motion decouples from the
motion associated with the collision dynamics. For
I ) 1, this decoupling requires the cyclotron frequency
to be large compared to the plasma frequency. This
strong-magnetic-field limit is often achieved in the ex-
periments, and in this case the guiding-center equations
of motion provide a good approximation to the exact dy-
namics of the system. Furthermore, we will see that for
N large, the spatial properties of the guiding-center sys-
tem in equilibrium are the same as those of an equivalent
system undergoing exact dynamics.

In the guiding-center approximation the state of each
ion is specified by its guiding-center position x and its ve-

locity U parallel to the magnetic field B. We take B to
be uniform and directed along the z axis of a cylin-
drical-coordinate system (p, p, z). The equations of mo-

tion are then

dx;/dh -(c/8)E;xi+U;z,

dU;/dh (e/m)E; i
(la)

(lb)

+g —,
' mto,'(z —p /2) (lc)

is the potential energy of the ions. The second term in

Eq. (lc) is due to the Penning-trap electrodes, and to, is
the axial bounce frequency for a single particle in the
trap. The 6rst term is the electrostatic interaction ener-

gy of the ions (diamagnetism and radiation are unimpor-
tant). We also assume that the Penning-trap electrodes
are far enough from the ion cloud that image charges
may be neglected.

Equations (1) can be written in Hamiltonian form and
admit two constants of motion: the Hamiltonian itself,
H=g; mU;/2+e@, and the canonical angular momen-

where E; = —tl@/8x; is the electric field acting on ion i

and
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turn, L=e8+;p;/2c. Thus, one expects the long-time
average properties of the system to be given by the Gibbs
distribution f=cexp[ —(H+roL)/kT], where co is the
rotation frequency. (The cloud rotates about the z axis
because of E& B and diamagnetic drifts. ) To be precise,
the distribution for a microcanonical ensemble should be
used rather than that for a canonical ensemble, but the
two distributions predict average properties which differ
only by O(1/N). ' Such differences are unimportant for
the N values used here, even though we are interested in

effects associated with boundedness of the cloud.
In the Gibbs distribution the term mL can be inter-

preted as the potential energy of ions in a cylinder of
uniform negative charge with density no = ro8/2nec.
Such a system is referred to as a one-component plasma
(OCP); so the spatial part of the Gibbs distribution is
the same for both the magnetically confined ions and
an OCP confined by background density no and the
Penning-trap electrodes.

By using the canonical ensemble with the exact (rath-
er than guiding-center) expressions for H and L, one
again finds an equivalence between the distribution for
the magnetically confined ions and the distribution for an
OCP, but for a slightly shifted background density. In
this way, one verifies the large-N equivalence claimed
above for the spatial properties in equilibrium of the
guiding-center system and the exact system.

In OCP studies, the degree of correlation is specified
by the value of the parameter I =e /akT. We deter-
mine the temperature as a long-time average of the mean
kinetic energy [i.e., T=((1/N)P;mU; )]. As is the
practice in OCP studies, we calculate the Wigner-Seitz
radius a in terms of the background density (i.e.,
—', za no=1), where no is determined in the simulations
from the time average of the rotational frequency [i.e.,

no = (8/2xec)(oi)].
We now consider some details of our computational

methods. We have designed a fourth-order Runga-Kutta
algorithm and a fourth-order predictor-corrector algo-
rithm, both with variable time step, to compute the ion
orbits using Eq. (1). The codes have been tested against
one another and have been vectorized to run efficiently
on a Cray X-MP computer. In the code, times are nor-
malized to co, ' and distances to (3e /mco, ) '1 . We typ-
ically integrate for times on the order of 10 co, ', in all
runs total energy is conserved to better than 1% of the
total kinetic energy, and total angular momentum is con-
served to 1 part in 10 .

Typically, we initialize a run by choosing either ran-
dom initial conditions or positions obtained from some
previous run. Positions and velocities are then shifted,
if necessary, to remove all center-of-mass motion (the
center-of-mass oscillations decouple from the other de-
grees of freedom). To cool the ions, a small frictional
damping force is applied to the parallel motion of each
ion, but this damping is turned off and the system is al-

lowed to equilibrate before any averaging is performed.
Care is taken to cool slowly so as to avoid metastable
states. The values of H and L determine T and (co), and
in general a spheroidal cloud of correlated ions results;
however, in order to improve our statistical averaging
and to facilitate presentation of results, we have chosen
initial conditions to obtain a spherical cloud. Single-
particle functions such as the density, T, and (co) are
then determined as functions of spherical radius. As ex-
pected from theory, T and (co) are constant, within error
limits. For each value of H and L several initial condi-
tions were used as a test of the repeatability of the simu-
lations, and results for average quantities agree within
statistical error.

We now examine the results of a series of runs em-
ploying the MD algorithm discussed above. In all cases
we have chosen initial conditions to give a spherically
symmetric cloud.

First, we discuss average spatial properties for N =100
and N 256 at various values of I . These properties are
independent of the value of 8 chosen since, for a given
configuration of ions, a change in 8 simply rescales the
value of co in H+roL. Thus, to improve the efficiency of
the code we take 8 small so that dynamics parallel and
perpendicular to B are on the same time scale.

We find that for moderate values of I (i.e., 1 =2-
100) the density in the cloud as a function of spherical
radius exhibits oscillations. The oscillations have max-
imum amplitude at the edge and decay away towards the
center of the cloud. Such behavior has been seen in a
similar system at moderate values of I, the OCP with an
edge. Totsuji has also observed these oscillations in
simulations of ions in a Penning trap with I 35. This
oscillatory behavior is a precursor to the formation of
crystal planes. As I is increased, the oscillations in-
crease in magnitude until the density between peaks goes
to zero; for a spherical cloud with N 100 this occurs at
I =140 (see Fig. 1). Thus, the ion cloud separates into
concentric spheres; for N =100, there are three spheres
with 4 ions in the innermost sphere, 26 in the middle
sphere, and 70 in the outermost sphere; for N =256,
there are four spheres with 6 ions in the innermost
sphere, 30 in the next sphere, between 76 and 78 in the
next sphere, and between 142 and 144 in the outermost
sphere (fluctuations with time in these numbers will be
discussed later). The areas under each peak are about
equal, implying that the number of ions per unit area in
each sphere is the same, being set by the background
density no. Thus, the number of ions per sphere roughly
scales as the surface area of the sphere.

We now turn to the ion configuration within a sphere.
In Fig. 2 we display ion positions at a particular time for
the outer sphere of the N =100, I =140 run in spherical
polar coordinates. Over short distances, some order is
apparent; however, there seems to be no order over
longer distances. We confirm this intuition by calculat-

512



VOLUME 60, NUMBER 6 PHYSICAL REVIEW LETTERS 8 FEBRUARY 1988

4.0

3.0—
~ ~

~ ~

2.0—
C

~ ~

~ ~ ~ ~ ~ ~
~ ~

~ ~ ~
~ ~

1.0—

~ ~ ~
~ ~

0.0
0.0 1.0 2.0

r

3.0 4 0

FIG. 1. Densit
-1OO, r - l4O.

'
y as a function of spherical radius for N

FIG. 2. Polar plot of ion positionso ion positions for the outermost shell

d81 i d, deasnre from pole on positive z axis).

mg the correlation function c(s) of all io
1 11 . Tll d

' '
0

e efinition of c&s g'" " '"
coor ination number C'

fo' ()- ()
number of ions w'th' d'

s s, where C(s&
'

& is the average
wi in distance s of an

'

(o t o1 o tli
Fi1. 3fo th ot ot h

s in e same sphere). We 1

plays decaying oscillations char
ermost sphere. For I =14
i a ions c aracteristic of a fluid W

is e avior further b con
i. e

"g
or t ese studies we take g"

arge i.e., ro, (0.1 eV) mc
d i 11

/
e we represented b ui

'

We calculate th
y guiding-center motion.

e e mean square dis 1

in time: For distanc
e isp acement of the ions

is ance, we determine (bz (t)) where

(bz'(t))- ~~ g Iz;(t, +t) z;(t, )]', —

and where t —t—J
—

t~ —i is constant and t ~ tj —t~- i

40 0.25

I
'l

I i
I 1

I
1

I

N = 100, I'
--- N = 256, I'
"" —N = 100, I'

3.0-
= 140
= 310
= 420 I

- 30
0 20

2.0-
0

0.15

20 U

1.0-
0.10

10
005

0
0 1.0 2.0

0
4.03.0

0.00
0 200 400

ation in the outer s hereFIG. 3. Correl
()

600 800 1000

FIG. 4. M. Mean square change in ositio~ po
ne, z t &; dashed line, &Br2(t)&

513

This fuunction increases linearl in
11 o dtotho t e cloud radius s

tarn the average diff
, so that we may ob-

th
e i usion coefficient in

ho h h dfii' (h 'ion z t )=2D
diffusion is shown

' F'own in Fig. 4 and ma b
similar plot of (br (t)) '

y e contrasted to a
r t in the same fi ure

constant, showin th
s in ee increase linearl y, br (t)) is almost

f o 11 o 11

ing t at there is little
sp ere, while diff'u

'

spheres is finit

iff'usion of ions on th
ni e. &n fact, at I-=]40 io

e o sp ere; however a
this hopping is not bo o served. For N=256

, as I is increased

occurs even at I =300.
= 56 some hopping

number of ions in th
ence the un certainty in the

e outer spheres.
us thee system behaves like a soli

u i e a liquid on each se a
m di ba e etween liquid and 1'dsoi is quite



VOLUME 60, NUMBER 6 PHYSICAL REVIEW LETTERS 8 FEBRUARY 1988

10-

0
100

t

200
I

300
t

400 500

3, where comparison of c(s) and C(s) shows that the
first peak of c(s) contains about 6 ions and the first two
peaks about 17-18 ions, corresponding to hexagonal or-
dering. However, the finite size of the cloud causes im-
perfections in the lattice and diffusion persists even for
large I values.
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FIG. 5. Average single-particle diffusion in the z direction;
Squares, N 100; circles, N 256.

different from anything obtained in previous work on the
infinite homogeneous ion system.

Diffusion coefficients at various values of I for
1V-100 and N =256 are displayed in Fig. 5. While
diffusion in the z direction decreases with increasing I, it
is still nonzero for the runs displayed; similarly, correla-
tion functions become more highly peaked as I increases
but show no abrupt transitions to long-range order.
However, as I increases, a 2D hexagonal lattice becomes
apparent on the spheres. This is most easily seen in Fig.
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