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Quantum chromodynamics at finite temperature and chemical potential is investigated nonperturba-

tively at large distance scales in terms of its three-dimensional eff'ective theory, which for the gauge

group SU(2) is the Georgi-Glashow-Polyakov model. It is shown that a global SU(2) symmetry breaks

if the temperature is high enough and it is argued that this new transition most likely coincides with

deconfinement. Some implications for quark-gluon-plasma physics are discussed.
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It is now widely recognized (see, e.g., Svetitsky') that
the quark-gluon plasma is nonperturbative over distance
scales sensitive to the singular infrared behavior of
finite-temperature Yang-Mills theory. That such singu-

larities could cause insurmountable problems for pertur-
bation theory was first pointed out by Linde, who

showed that observables could not be perturbatively
computed beyond certain characteristic orders, e.g. ,

O(gs) for the thermodynamic potential. Subsequently,
theorists resigned themselves to doing the best they could

up to such orders, arguing that at a sufficiently high tem-

perature T, the incalculable higher orders would not be
important anyway because of the smallness of the run-

ning coupling g(T). However, even this limited calcula-
bility has been called into question by recent work on the

Debye screening mass.
As is well known, in perturbation theory mD starts out

at the one-loop value O(g ). Gauge-invariant correc-
tions to this value have recently been shown to be per-
turbatively incalculable because of an increase in the
effective coupling at distance scales beyond the naive

one-loop Debye length. This is consistent with the con-
fining nature of the infrared sector of hot QCD as indi-

cated by the area-law behavior of spacelike Wilson loops
at high temperature.

There have been indications ' that despite this con-

fining behavior, the deconfined phase may be character-
ized by a Higgs-type condensate in the electric sector,
which would provide an elegant mechanism for curing its

infrared divergences. It was argued that if such a con-
densate were indeed present, high-temperature perturba-
tive results could be rendered invalid even before the on-
set of the Linde infrared problem, thus explaining the re-
sults of Ref. 5. Since the existence of the condensate is
inherently undecidable in perturbation theory, a nonper-
turbative analysis of the infrared sector of hot QCD is
required.

In this Letter, I report on some preliminary investiga-
tions in this direction. In order to isolate the infrared
dynamics responsible for the nonperturbativity, I have
chosen to work at temperatures T that are so high that
the running coupling g(T) is small. I can then focus on
the infrared sector (momenta«T) by perturbatively in-
tegrating out those modes which do not suffer from
infrared divergences, namely the so-called nonstatic
modes, which include all the fermionic modes. If this in-
tegration were also to include the static (zero Matsubara
frequency) modes, then, as is well known, all ultraviolet
divergences could be removed by essentially the same
counterterms as at T=O. However, when these counter-
terms are applied to the nonstatic integrals alone, some
divergences survive the renormalization. These residual
ultraviolet divergences play the role of counterterms of
the effective theory for the static modes, showing up in

the guise of its bare parameters. They will be cancelled
when the static sector is taken into account, reflecting
the ultraviolet finiteness of the full theory.

The effective action is found to have the three-
dimensional (3D) form

S= d x[(2G ) 'TrF (A)+Tr(2)p) +mo Trp + —,
' p(Trp )2],

where A represents the magnetostatic potential and p (an adjoint scalar field) the electrostatic potential. The parame-
ters of S can be calculated for the general case of N colors and Nf quark flavors (each having a chemical potential p;,
i = I, . . . ,Nf). A power-counting analysis shows that the (bare) mass parameter mo needs only be computed to two

loops in the nonstatic modes and the induced quartic coupling constant p to one loop and that couplings higher than the
quartic need not be considered. The 3D gauge coupling is G =g(T,p; )JT, which does not run as long as T and p; are
fixed. I shall henceforth suppress the p; dependence of g for simplicity. The couplings mo and p are given by ' "

2' d k
mo =APSE

(2~)' "
regularized

+ (two-loop terms), p = 5N —(2N —3)Nf
N(N'+ I)
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6x T
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where I have assumed a general 3D ultraviolet regulari-
zation, mg is the (naive) one-loop Debye mass squared,
and the two-loop corrections to mo include logarithmic
ultraviolet divergences. (In accordance with the remarks
made above, the choice of 3D regularization is arbitrary
and need not coincide with that of the 4D theory. ) The
expression for p is a new result", details of the calcula-
tion will be provided elsewhere. In the special case
N=2, Nf =0, the formula reduces to p 2G T/3rr, a
result obtained previously by several authors. ' '

To economize and simplify still farther, let us choose
the gauge group SU(2). Our effective theory is then the
3D Georgi-Glashow model, whose large-scale properties
in the Higgs phase are well known as a result of analyti-
cal studies initiated by Polyakov. ' In a classic paper, he
showed that its infrared structure is dominated by a
Coulomb gas of 3D instantons, which in the present con-
text can be thought of as 4D static 't Hooft-Polyakov
monopoles, with long-range interactions which disorder
the system. The naively broken global SU(2) symmetry
is thereby restored, producing U(1)-type confinement
and reconciling the apparently contradictory require-
ments of confining and Higgs-type behavior. His argu-
ments were later modified when it was discovered that
there exists, in addition to the above Coulomb-gas in-

teraction, an always attractive "elastic" force mediated
by the Higgs field, which can lead to a monopole conden-
sate if the Higgs-boson mass gets small enough to be
comparable to the inverse mean free monopole separa-
tion. ' The observed instability appeared to be charac-
teristic of a first-order transition; however, it should be
noted that this dilute-gas approximation used in these
calculations breaks down near the critical Higgs-boson
mass.

More recently, Dahlem recognized that these results
were applicable to finite-temperature SU(2) gauge

theory under the assumption of a Higgs condensate. A
two-loop perturbative result of Anishetty, which yielded
a nontrivial minimum for the Higgs effective potential,
was combined with the above dilute-gas approximation
to obtain an infrared-finite expression for the thermo-
dynamic potential. It was estimated that the instability
of the Higgs phase would occur when the gauge coupling
became of order unity, i.e., somewhere around the de-
confinement transition. An abrupt change in the mono-

pole density at deconfinement together with the appear-
ance of a Higgs condensate was observed by Polonyi and
Wyld' in SU(3) Monte Carlo simulations, though for
statistical reasons their results can only be regarded as
indicative.

The only approximation that can be rigorously jus-
tified is that of perturbatively integrating out the non-
static modes at high temperatures. Having thus arrived
at the eff'ective theory, my goal is to establish the Higgs
phase without further reliance on perturbative or semi-
classical results. I therefore examine the 3D Georgi-
Glashow model on the lattice and show that is has a
two-phase structure; here I use numerical simulations
only in a confirmatory capacity. I describe how the 4D
finite-T theory induces renormalization-group flows in

the space of bare couplings of the 3D theory, each
fixed-T curve providing a possible continuum limit of the
model. I show that at sufficiently high T these flows lie
in the Higgs phase. Finally I discuss the results.

Let us forget for the moment the connection of the 3D
model with finite-temperature physics, and explore its
phase structure on the lattice. If we choose unitarity
gauge, the partition function after suitable rescaling can
be written as

Z(P, i~, k) =„[p e dp] [dU]e

where

—S,ff[p, U] =P g 2 TrU&~, q+x g p(n)p(n+i) 2 Tr[U; (n)cr U;(n)cr ] —k g p (n).
plaqs links sites

The rescaling relations which connect the bare parame-
ters of the continuum and lattice theories are

G =4/ap, mo =(2/a )(x ' —3),

p =8k/ax. , Trp =vp /2a.

A semiquantitative picture of the phase diagram can
be obtained by examining the model at its boundaries in

(p, x,k) space; here I shall only give the details of im-
mediate relevance. At p=~, links are frozen to pure
gauge values and the plaquette term drops out. The
model reduces to a theory of interacting O(3) spins with
radial degrees of freedom damped by the k term, and we
can borrow standard results from the theory of critical
phenomena (see, e.g. , Ma' ). For A, =O we have the
Gaussian model which becomes unphysical for x & —,'.

(In fact, an examination of the functional integral shows
that this result holds for any value of p. Thus, for X =0
there is a line of physicality at x= —,

' stretching from

P =0 to P =~.) For X & 0 we have an SU(2)-breaking
second-order transition which moves smoothly away
from x = —, with increasing k. The position of the criti-
cal line can be derived' by analysis of the linearized
renormalization-group equations near the Gaussian fixed
point. If we convert the spherical momentum cutoff of
Ref. 15 to our cubic lattice cutoff, the critical line is
given in terms of the lattice parameters by

where the constant cL characterizes the cubic lattice
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cutoff and is given by us that the curves will lie above the critical surface when

a "dk
(2~)' "

lattice

8cL Bx,
9 gp

—
1

1 (8 Nf—)g'(T) 8~,

, i o 9 24~' aX p=„
dxldx2dx3

;sin x;

Preliminary Monte Carlo simulations confirm the
above analysis, with the transition showing up in the ex-
pected places as a steep increase in the thermal average
of the link action; details of the completed investigation
will be reported elsewhere. The resulting phase diagram
of the 3D Georgi-Glashow mode1 consists of a critical
surface ic, (P,X) which separates a disordered phase
characterized by full SU(2)-type confinement (small rc)

from an ordered phase characterized by a condensate of
the Higgs field as well as by confinement arising from
the compact U(1) subgroup (large x).

To obtain a nontrivial continuum limit of the lattice
Georgi-Glashow model, the fixed point (P=~, x. = —,',

0) must be approached in a delicate manner dictated
by renormalization-group analysis, with some physical
mass parameter held fixed. Rather than attempt a gen-
eral analysis of this three-parameter theory, let us re-
turn to the original purpose and consider the Georgi-
Glashow-Polyakov model as the infrared limit of SU(2)
gauge theory at high temperatures. The mass parameter
I shall hold constant is of course the temperature. At
fixed T, x and k are specific functions of P and accord-
ingly define a curve in parameter space. Thus, the
finite-temperature connection provides a one-parameter
family of curves in the phase diagram, each curve la-
beled by a value of T. Let us consider these curves in

greater detail.
Converting the bare parameters of the continuum

effective theory to their lattice counterparts for N =2, we

find

P =4[aTg'(T)]

x = [3 —8ci/P+O(ln/j/P2)]

X = [(8 Nf)g'(T)/24m ] (—ic'/P),

where cL is the constant encountered earlier; the negative
sign in front of it will be crucial. The function g(T) is
well known from asymptotic freedom: At one loop it is
given for SU(2) by g (T) =12m /(11 —Nf)ln(T/AgcD).

In the continuum limit a 0 (P ~), these curves
flow towards the Gaussian fixed point K = 3, X =0. Do
they approach it from above the critical surface or from
below? To answer this question, expand the curves
around the fixed point in powers of P '. Now let the
critical surface in the same region be given by
ir=ic, (P ', A, ). Simple differential geometry then tells

From our earlier discussion of the form of K, near the
fixed point, we know that the first term on the right-hand
side vanishes, while for the second term we have Bv,/

10cL. The critical coupling of the finite-temper-
ature theory is then given by

(Note that while ic, depends on cL, the above relation is

independent of the cutoff procedure, as it should be.
This is an important check on the calculations. ) For
Nf =0 this gives g (T, )=24, and so the theory is cer-
tainly not in the perturbative regime at the transition
temperature and the value of T, it gives can at best be
viewed as an order-of-magnitude estimate. On the other
hand, we can certainly conclude that if T is sufficiently

large a Higgs condensate must be present.
It would not be too surprising if the SU(2)-breaking

transition turned out to be the 3D vestige of decon-
finement, since a Higgs condensate is necessary for the
stabi1ity of the monopole gas, while a condensation of the
latter could provide the electric "Meissner effect" be-
lieved to cause confinement. But since the 3D theory be-
comes eff'ective only at very high temperatures, such a
connection must be made externally. One can argue as
follows: T, cannot be much higher than the decon-
finement temperature; otherwise the effective theory
would have self-consistently predicted a small value for
g(T, ). So the SU(2) breaking occurs either at zero tem-
perature or at deconfinement or at some other not too
high temperature. The last possibility is unlikely since
numerical simulations have not revealed any structure in

that regime. The second is favored over the first because
of the Monte Carlo results of Polonyi and Wyld' men-
tioned earlier, which connect the phenomena of decon-
finement, which breaks the global Z(N) center symme-

try, and electrostatic condensation and/or monopole-gas
formation, which breaks global SU(N).

The occurrence of an electrostatic condensate affects
the large-scale degrees of freedom of the quark-gluon
plasma, drastically altering its collective properties. Let
us briefly consider one important aspect viz. how our pic-
ture of Debye screening might change. In the absence of
symmetry breaking, the naive dimensional-reduction-
electrostatic-decoupling scenario (see, e.g. , Ref. 4) would
hold and perturbation theory would give reliable results
for the Debye mass at suSciently low orders. In the ac-
tual case of broken symmetry, only a reduced version of
Debye screening due to the residual Higgs field remains,
for which perturbative results are inadequate. The re-
sults of Polyakov, ' appropriately translated, suggest
magnetic screening masses O(g T), a U(1) string ten-
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sion O(g T ), and a Debye screening mass considerably
smaller than the naive perturbative one-loop value. This
is a far cry from the conventional picture of the quark-
gluon plasma.

While the present approach has permitted an economi-
cal focus on the infrared dynamics, it has made connec-
tions to the full theory difficult in the transition regime.
Therefore I have avoided addressing here such issues as
whether the two phases are analytically connected at
strong coupling: These are interesting within the context
of the 3D model but the answers may be irrelevant to
finite-T physics. Nevertheless, the main result, that the
vacuum of SU(2) gauge theory at high temperatures is
nontrivial over large distance scales, is clearly indepen-
dent of the use of the effective theory. The latter has, in

fact, a decided advantage over the full 4D theory in that
dynamical quark fields can be integrated out perturba-
tively (even at finite chemical potential), avoiding the
usual worries of putting them on the lattice. Indeed,
dynamical quarks have been insignificant to the results,
since I have been concerned with the breaking of gauge
as opposed to center symmetry. Global gauge-symmetry
breaking might then characterize the plasma transition
even for full QCD, though I do not yet know whether it
would survive as a true phase transition. This possibility
is under investigation.

It is a pleasure to thank R. Gavai for collaboration on
the numerical aspects of this project, which resulted in

many lively discussions. I am most indebted to H. Neu-

berger for a crucial observation and many useful sugges-
tions. I have also benefitted greatly from informative
conversations with P. Orland, J. Polonyi, and T. Ziman.
This work was supported in part by the National Science
Foundation under Grant No. NSF-PHY84-15534.

'B. Svetisky, Nucl. Phys. A461, 71c (1987).
2A. D. Linde, Phys. Lett. 96B, 289 (1980), and Rep. Prog.

Phys. 42, 389 (1979).
D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod.

Phys. 53, 43 (1981).
4S. Nadkarni, Phys. Rev. D 27, 917 (1983).
sS. Nadkarni, Phys. Rev. D 33, 3738 (1986).
sS. Nadkarni, Phys. Rev. D 34, 3904 (1986).
7C. Borgs, Nucl. Phys. B261, 455 (1985); C. DeTar, Phys.

Rev. D 32, 276 (1985); T. DeGrand and C. DeTar, Phys. Rev.
D 34, 2469 (1986).

sR. Anishetty, J. Phys. G 10, 439 (1984).
9K. J. Dahlem, Z. Phys. C 29, 553 (1985).

' J. Polonyi and H. W. Wyld, Univ. of Illinois Report No.
ILL-(TH)-85-23, 1985 (unpublished); J. Polonyi, Nucl. Phys.
A261, 279c (1987).

S. Nadkarni, unpublished.
'zN. Weiss, Phys. Rev. D 24, 475 (1981).
'3A. M. Polyakov Nucl. Phys. B120, 429 (1977).
'4K. Dietz and Th. Filk, Nucl. Phys. B164, 536 (1980).
~sS.-k. Ma, Modern Theory of Critical Phenomena (Benja-

min, Reading, MA, 1976).

494


