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We investigate the problem of inequivalent quantizations of a physical system with multiply connected
configuration space E; For scalar quantum theory on X we show that state vectors must be single valued
if and only if the first homology group H~(X) is trivial, or equivalently the fundamental group tt&(X) is
perfect. The 8 structure of quantum gauge and gravitational theories is discussed in light of this result.
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In this Letter we consider ordinary scalar, U(1) quan-
tum theory on a general configuration space X. That is,
we study quantum systems whose physical state vectors
tit are mappings from a space X into the complex num-

bers, ' ttr:X C. It is well known that although the
probability densities

~ ltr ~
must be single valued on X, ttt

need not satisfy this requirement. A state vector is, in

general, allowed to change by a phase when its argument
is transported around a generic loop I in X:

y(x) a(l) tit(x), a(l) c U(1).
I

However, it has been shown by various techniques
that the mapping a from loops in X into U(1) must be
constant on homotopy classes [i.e., a(l t) =a(12) if I t can
be continuously deformed into l2). Therefore we may
think of a as a mapping from trt(X), the fundamental
(or first homotopy) group of X, into U(1). Moreover,
this mapping must be a homomorphism; that is,
a C Hom(trt(X), U(1)), where Hom(A, B) is the set of
all homomorphisms from the group A to the group 8.
(This set also forms a group under pointwise definition of
the product. )

The linearity of the space of states implies that if one
state vector "transforms under loops" according to a
given a C Hom(tr~(X), U(1)), then every other vector
from the same Hilbert space must also transform with
the same a. (This means that there are not transitions
between two states which transform differently from
each other. ) Therefore, for every homomorphism a
there will be a distinct Hilbert space of state vectors
transforming under loops with that a. In general, each
of the above Hilbert spaces will represent a distinct phys-
ical system. So, in constructing a scalar, U(1) quantum
theory on X (with fixed choice of Hamiltonian operator,
boundary conditions, etc. ), one has to choose between
the different types of allowed multivaluedness of the set
of physical state vectors. There are as many such (possi-
bly) inequivalent quantizations as there are elements of
A=Horn(trt(X), U(1)). The existence of this kinemat-
ical "quantization ambiguity" has been seen to give rise
to various important features of many theories, including
the Aharonov-Bohm effect, the different possible statis-
tics for identical particles moving on a given manifold,

and the 0 structure (or "vacuum angle" ) of quantum
Yang-Mills and gravity theory.

From the above we see that if X is simply connected
[tr~(X) =[ej], than the group 0 is trivial (i.e., contains
only one element, namely the trivial homomorphism).
This corresponds to the statement that state vectors on

simply connected spaces must be single valued. The
standard intuition is that when X is multiply connected
[tr~(X)e jej), 0 will contain more than one element, so
that there will exist a nontrivial set of inequivalent
quantizations of the theory. In what follows we will

determine the necessary and sufFicient conditions for 0
to be trivial and see that this latter statement is in-

correct. That is, we will classify those spaces X for
which Q contains only the trivial homomorphism. Final-
ly, the previously mentioned 8 structure of quantum

gauge and gravitational theories will be reexamined in

the light of this result.
The first step is this classification is the realization

that since the target group of the homomorphisms in 0,
namely, U(1), is Abelian, each of these maps can be con-
sidered as a homomorphism of some Abelian quotient
group of tr&(X) into U(1). Therefore, we may restrict
the domain group of these maps to the Abelianization
of trt (X), which is isomorphic to H~(X), the first integral
homology group of the space X. That is,

0 =Horn(tr~(X), U(1)) =-Hom(H~(X), U(1) ).

(This has also been noted by Dowker. ) With this char-
acterization of 0, we can see that if Ht(X) = jej, then 0
is trivial. Also, it is straightforward to show that if
Ht(X) is nontrivial, then so is Q. This follows from the
fact that H&(X) is necessarily Abelian and there is al-
ways a nontrivial homomorphism (as well as the trivial
one) from any nontrivial Abelian group into U(1). This
is easy to see if H~(X) is finitely generated (which is al-
ways the case if X is a finite-dimensional compact mani-
fold of finite CW complex as well as for the infinite-
dimensional or noncompact spaces usually considered in

physics), since any finitely generated Abelian group can
be written as ZS . . SZSZd, - SZd, where Z is
the additive group of the integers, and Zd. is the cyclic
group of order d;. ' There still exists such a nontrivial
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homomorphism into U(1) even in the bizarre case when

H~(X) is not finitely generated. " Thus we have proved
the main result of this paper:

t1 is trivial if and only if H ~ (X) = {e].

We still see, of course, that if X is simply connected, Q is
trivial, since n~ (X) = {ej implies H~(X) = {eI. However,
there do exist multiply connected spaces X [tt&(X)&{e]]
which nevertheless have H~(X) [the Abelianization of
n~(X)] trivial. So again on such spaces only single-
valued state vectors are allowed. A group whose Abeli-
anization is trivial is called perfect in the mathematical
literature. ' ' So an alternative way of stating our main
result is

0 is trivial if and only if n~ (X) is perfect.

We will call a topological space whose fundamental
group is perfect a fundamentally perfect space. Again
we note that the class of fundamentally perfect spaces
contains as a proper subclass all simply connected
spaces, and that scalar, U(1) quantum mechanics on any
fundamentally perfect space admits only single-valued
state vectors, i.e., it has no quantization ambiguity due to
possible multivaluedness of state vectors. We wish to ac-
centuate the fact that our main theorem is extremely
general. It applies to the construction of quantum
theories on both finite- and infinite-dimensional spaces X:
from particle mechanics, to field theory, to string theory,
and so on. ' It therefore has possible applications in

every branch of quantum physics and should be of wide
interest.

As our first "application" of the above result, we con-
sider pure gauge field theory, with structure (internal
symmetry) group G, in (d+1)-dimensional flat space-
time. We first discuss the classical configuration space
in the Ap=0 gauge (the temporal or Weyl gauge). We
impose strong (finite energy) boundary conditions on the

gauge potentials and gauge transformations, allowing us
to replace the space manifold R by its one-point
compactification S, the d sphere. The classical config-
uration space can then be written as' the set of all
time-independent gauge potentials (in Weyl gauge) A,
modulo the group 9 of time-independent gauge transfor-
mations; 9= {g:S G] is the set of all base-
point-preserving differentiable maps from S into the
structure group G. This space, denoted by A/9, is called
the gauge orbit space. We will assume that the state
vectors in the quantum theory have as their domain the
classical configuration space A/Q. This assumption is at
least valid to all orders of the semiclassical approxima-
tion.

The object of interest for us is the fundamental group
of the gauge orbit space x&(A/9). We may write the
standard result '

ni (A/9 )= np (9)=xd (G),

where the first isomorphism follows since z„(A) ={e]
for all n and since 9 acts freely (i.e., without fixed
points) on A. The second isomorphism is a consequence
of the definition of 5' and the nth homotopy group z„.
So the set 0 labeling the inequivalent quantizations is

0 =Horn(n~ (A/5'), U(1) ) =- Hom(nd (G),U(1)).
If, as an example, we take ordinary (3+1)-dimensional
gauge theory with a simple, non-Abelian Lie group G
[for which n3(G) =-Z], we find 0 Hom(Z, U(1))
—=U(1). Therefore, the set of inequivalent quantizations
is labeled by a continuous parameter, the so-called "vac-
uum angle" e. In this example z~(A/0) =Z, which is

Abelian, and thus H~(A/0) —=n~(A/5') =-Z ln&(A/&) is

not perfect] leading to a nontrivial set O. We would like
to know whether it is possible to find a gauge theory such
that the orbit space A/9 is multiply connected, yet
H~(A/g) ={e], thereby leading to a trivial 0 (no 8
structure) even though tr~(A/g) is nontrivial. Equiva-
lently we ask, can the gauge orbit space be fundamental-

ly perfect but not simply connected [z~(A/9) perfect
and nontrivial]? [An obvious example of a simply con-
nected A/9 is QED in 3+1 dimensions where G =U(1),
K3 (G) = {e],and 0 is trivial. ]

The answer to this question is negative. This is easy to
see for d~ 2 since n~(A/g)=—nd(G), and hard is always
Abelian for d ~ 2, ' while if z~(A/9) were perfect and
nontrivial it would have been non Abelia-n The r.emain-

ing case d 1 is taken care of by the use of another
theorem from algebraic topology' which states that the
fundamental group of a topological group is always
Abelian. So we have seen that for pure gauge theories
with space manifold S, tt~(A/9) is always Abelian and
thus tr~(A/Q)=H~(A/9) regardless of the structure
group G and spatial dimensionality d. Therefore the
usual intuition that multiple connectedness of A/9' im-

plies nontrivial 0 has proven correct here despite our re-
sult that in general this is not true. Allowing the space
manifold to have a more nontrivial compact topology
does not seem to change this negative result. '

Interestingly, the situation in gravitational theories is

different. Let us assume the space-time manifold M to
have the structure M ZXIR, where Z is a compact
three-manifold with fixed topology. The configuration
space relevant to semiclassical canonical quantum gravi-

ty theory is' the set of all Riemannian metrics on X,
RiemX, modulo the group DiffF(Z) of diffeomorphisms
of Z which leave a point in X and a frame at that point
fixed. We denote this orbit space by Riem(X)/DiffF(Z)
=R/D and wish to find its fundamental group. As with

gauge theories we may write'

n) (R/D )=np(DiffF (Z) ).

Therefore 0 =Hom [zp(DiffF (Z) ),U(1)] which when

nontrivial leads to the gravitational analog of the 0 struc-
ture in gauge theories.

482



VOLUME 60, NUMBER 6 PHYSICAL REVIEW LETTERS 8 FEBRUARY 1988

Now DiffF(Z) is an infinite-dimensional Lie group,
and the calculation of xp(DiffF(Z)) is in general very
difficult. However, in some recent work, ' this zeroth
homotopy group has been computed for three-manifolds
of the form Z=S /0, where H is a finite group acting
freely on S . Interestingly, for three-manifolds of this
type there is exactly one which has 1tp(DiffF(Z)) perfect
and nontrivial. This is the space Z =5 /I*, for
which xp(DiffF(Z)) =I* (I* is the binary icosahedral
group'2's). Therefore, scalar, U(1) quantum gravity on
R/D for this Z will only allow single-valued state vectors
even though R/D is multiply connected [zt (R/D) =I*lj.
Other space manifold topologies for which this is true
may also exist. The above example shows the danger of
trusting the standard folklore on the existence of 0 struc-
ture.

In closing, it is important to note that the above results
may change if the state vectors are mappings from the
space X into some Hermitean vector space other than C.
For instance, if we have n-component complex state vec-
tors, y: X ti:", then there is an extension of the above
U(1) quantization ambiguity, the analog of 0 being
Hom(xt(X), U(n)). ' Now, although for n= 1 this set is
trivial if and only if z~(X) is perfect, this may not be so
for n & l since such groups will generally possess more-
dimensional nontrivial unitary representations.
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