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We analyze the effect of irregular classical scattering on the corresponding quantum-mechanical
scattering matrix. Using semiclassical arguments, we show that the fluctuations in the S matrix and the
cross sections are consistent with a random-matrix description (Ericson fluctuations). The results are il-
lustrated by a numerical solution of a simple quantum problem, whose classical counterpart displays ir-

regular scattering.
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It has been known for many years':? that classical tra-
jectories describing scattering (elastic, inelastic, or ex-
change) may show extremely complicated (“irregular”)
and sensitive dependence on the initial conditions. The
interest in this phenomenon was recently revived>~® when
the modern tools developed for the study of chaotic
bounded trajectories were successfully applied to the
analysis of unbounded scattering problems, displaying ir-
regular features. Several models of very different physi-
cal systems were studied in detail. All exhibit irregular
scattering (IS), and have some common basic features
which seem to be generic, suggesting that IS is rather
common within the manifold of nonintegrable scattering
problems.

In the present paper we study the quantum description
of systems whose classical analog displays IS. Using
semiclassical arguments we show that classical IS im-
plies that the quantum S matrix is fluctuating in a way
consistent with the results of the random-matrix scatter-
ing theories.®"!> The relation between random-matrix
theory and the fluctuations in the quantal spectra of clas-
sically chaotic bounded Hamiltonians is well estab-
lished.'®!” Our results extend this link to the domain of
scattering in unbounded systems.

We shall concentrate on nonintegrable Hamiltonians
with two freedoms, x and 6, with conjugate momenta p
and I. The x motion is unbounded and 7 (8) are conju-
gate action (angle) variables. (Our analysis can be trivi-
ally extended to include any number of action-angle vari-
ables.) As |x|— oo the Hamiltonian depends only on
the momenta p and I. Classical trajectories required for
the calculation of the I— I' transition probabilities
(cross sections) are constructed in the following way: At
t— —oo (and |x|— o0) the initial action I; is set to
the value I, while p; is set to give the total energy its
specified value. For each initial angle 6;, a solution of
the classical equations of motion yields at t— +oo
(| x | — o0) the final value of the action, I,(6;,I; =I).
Each trajectory which satisfies [ f(ei,li) =]' contributes
to the transition probability a term

e =Qx) ~'181,(6;,1;)/36;1 7!

and the total transition probability is the sum over all the
contributing trajectories labeled by the index s.
For further reference we introduce the reduced action?

o=— ([ xdp+ [ oar]

=fpdx+f1d9—[px+19],f (1)

calculated along a scattering trajectory. & is finite and
its derivative with respect to the energy, 9®/dE, defines
the delay time 7(6;,I;) which measures the extra time
spent by the trajectory in the interaction region. Simi-
larly, 8®/dI, defines the net phase angle ©(6;,1;) ac-
quired during the interaction.

IS manifests itself in the calculation of classical trajec-
tories in the following way:

(i) The function I;(6;,1;) fluctuates wildly in some
(6;,1;) domains. The fluctuations persist on all scales of
either ; or I;, and I;(6;,I;) assumes all values I’ con-
sistent with energy conservation) infinitely many times
(see Fig. 1). In these regions ©(6;,I;) and T(6;,I;)
display unbounded fluctuations, and the trajectories are
unstable. =3
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FIG. 1. The function I;(68;,I; =7h) showing IS for E=1.7,
R=0.1, and V' =3.0.
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(ii) Denote by S the set of initial conditions (6;,1;) at
a given energy E for which T7(6;,I;) = T. Then (a) the
measure u(S7) decreases as u(S7) =Aexp(—yT), and
(b) in the limit of large T, S7— « is a Cantor set.>

We shall use the semiclassical reaction theory? to
write the S matrix in the form

S;_ (E)=X,[p 1 2exp(i®/h — L inas). (2)

The sum extends over all the contributing classical tra-
jectories and a; is the Maslov index.'® The semiclassical
theory relies on the assumption that the actions @ for
different trajectories with the same boundary conditions
are separated by more than A. The validity of this state-

|

Cye) =X p 1 (E)explich ~' 90 “/OE)) g

+H X O (E)p

s#s'

The phase factor in the second term involves differences
of classical actions from different trajectories. If we
choose AE such that the variation of the classical actions
will be large on the quantum scale, the contribution of
the double sum in Eq. (4) averages out. In the first term
we replace d®/9E by T, and, using the delay time
to label the trajectories, we get

Cule) = [ dT(P,1 (B, T))p explieT/h). (s)

P, .(E,T) is the classical probability that an I — I’ tran-
sition occurs while the delay is in the interval [T,T
+dT]. According to (i) and (i) above, P,.(E,T)
~expl— y(E)T] (see Fig. 2), and is independent of I or
I'. If AE is chosen sufficiently small on the classical
scale that the variation of y in the interval can be
neglected, we get

Cy(e) =Cpy(0)y/(y—ie/h). (6)
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FIG. 2. Probability distributions P, ,(E,T) and P, ,(E,©)
averaged over I'. Same potential parameters as in Fig. 1.

478

S0 (E)] 2 expli(@® — @) /h — tin(a, —a,)De.

ment was never checked in the context of IS, where there
exist infinitely many trajectories which contribute to the
sum, all lying in close vicinity in phase space. We shall
justify the use of the form (2) in the sequel.

We shall denote by /%) ,.(E) and S,_. ;(E) the con-
tributions to the S matrix from the regular and irregular
trajectories, respectively Consider the autocorrelation
function

C”I(f) =(S’I*"(E)L§ll’(E +6)>E, (3)
where () denotes the average over a classically small
energy interval AE, whose size will be discussed below.
Substituting (2) in (3), we get to lowest order in ¢

(4)

This equation is valid if the classical and quantum ener-
gy scales are sufficiently different and AE is chosen in the
intermediate range.

Another important correlation function is

F”'(n) =(§;;'(E)§”"(E))[

where n=I"—1I', and (); denotes the average over a
classically small domain of I and I', with n constant.
Using similar reasoning as above, we find

Frp(n) ~(Xp pexplih ~'na®9/a1,))

@)
~fd6(P,_, (©))explin ~110).

P, (E,B) is analogous to P .(E,T) where the net angle
© replaces the delay time. Pj.(E,0) is peaked at some
mean angle ©y, and falls as exp(—a|© —6y|) (see Fig.
2) and is independent of I and I'. Therefore
F(n)~F(0)(1—in/ha) ~'. n/h can assume only in-
teger values. Hence, if a <1, the S}, are uncorrelated
and their mean square is independent of I and I'. If
S@—0, S is only constrained to be unitary and sym-
metric, suggesting that its properties are completely
determined by the corresponding properties of Dyson’s
orthogonal ensemble.'* Hence, we have the following.

(a) The nearest-neighbor distribution of the eigenval-
ues on the unit circle is a Wigner function.

(b) At a given energy, the distribution of |S,.|? is
Poissonian.

(c) Since the probability of S}, to be small is largest,
the energy dependence of the cross section for a given
transition, o,;.(E), will show a typical fluctuation pattern
(Ericson fluctuations).®

(d) Because of (6), the {(o;.(E)o;.(E+e€))g should
be a Lorentzian, whose width is A y.

These features are modified if S @0, '° but we shall
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not discuss this point here because of lack of space.

To justify the semiclassical approximation we observe that the problem of coalescence of actions @) becomes more
acute as the delays T are longer. The corresponding probability densities decrease exponentially and hence this re-
gime of T (and ©) values will have little effect on the correlation functions.

To illustrate these results we computed the S matrix for a simple Hamiltonian:

H(p,x,1,0)=%p*+ + RI>+Vcos® 2, expl—(x—mé&)2l. (®)
1

m=0,*

We shall show results for two values of V. For ¥=3.0 |

classical phase space is dominated by IS, whereas for
V'=0.3 the classical phase space is mostly regular. The
range of energies considered was 1.5<F < 2.3 and we
chose R=0.1 and £=10. The probabilities P, .(E,T)
and P;.(E,®) were calculated by means of a Monte
Carlo integration procedure and the decay constants y
and a were deduced, y=0.023£0.001 and a=0.045
%+ 0.005. Within the statistical uncertainty the values of
y and a were found to be independent of the energy
(within the considered range) and of the actions 7 and I"'.
In Fig. 1 we show the function 1,(6;,1;), and in Fig. 2 we
show P, (E,T) and P;;(E,©) averaged over all I'
values.

The Schrédinger equation was written in the basis of
the free-rotor eigenstates, truncated to include all “open
channels” with |I| </Imax=(E/2Rh?)'2, and we chose
h%=1+. The Hamiltonian is symmetric with respect to
the operation 6— — 6. Hence symmetric and antisym-
metric combinations of rotational states |7(*’)=(1/
ﬁ){ll Y+ | =D} do not couple. Further reduction is
possible because of the symmetry x— —x. In each sub-
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FIG. 3. (a) Nearest-neighbor distribution and (b) the distri-
bution of |S,,.| 2 The full histogram is for ¥ =3.0, the dashed
histogram for ¥ =0.3, and the smooth curves are the predic-
tions of random-matrix theory. The height of the first bin in
the dashed histogram of (b) was truncated at 1.5 for a clearer
presentation (the true value is 2.93).

space we checked the properties (a) and (b) mentioned
above. We accumulated sufficient statistics by adding to
the same histogram the contributions from a range of
energies. Figure 3(a) shows the computed nearest-
neighbor distribution. Figure 3(b) shows the probability
distribution of | S| % The full histograms were calcu-
lated for ¥ =3 (classical IS) and the dashed histograms
correspond to ¥ =0.3 (regular case). The solid curves
show the expectation from random-matrix theory. The
E dependence of the inelastic transmission probability
accompanied by the | 74— |9(7)) transition is shown
in the inset of Fig. 4 for ¥ =3 (classical IS). It displays
a typical fluctuation pattern, while the same quantity
when calculated for ¥'=0.3 is monotonic in E (not
shown). The corresponding S-matrix autocorrelation
function [Eq. (3)] is also shown in Fig. 4 together with
the expected Lorentzian [Eq. (6)], whose width
hy=0.01 was extracted from the classical calculations.
The fluctuating part of the S matrix was obtained after
the subtraction of the smooth part of S;;.(E), which was
taken to be the energy average of the S matrix over five
correlation lengths. The shape of the autocorrelation
functions of the other S-matrix channels closely resem-
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FIG. 4. Absolute square of the energy autocorrelation func-
tion for the S matrix elements corresponding to the |7¢(7?)
— |9¢)) transition for ¥ =3.0. The smooth curve is obtained
from Eq. (6), with Ay=0.01. Inset: Inelastic transmission
probabilities, for the same transition, as a function of the total
energy.
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bles the one in Fig. 4 and their widths are within 50% of
the expected result (Ay=0.01).

We can summarize the numerical study by stating
that whenever the classical dynamics shows IS, the cor-
responding quantum description follows the predictions
(a)-(d). These results strongly support the simple semi-
classical arguments presented above, and the suggested
link between classical IS and the quantal random-matrix
theory for scattering.

Fluctuations of the kind discussed here were first ob-
served in the measurements of nuclear reactions and
were interpreted by Ericson® and others'® as due to the
contributions of many resonances with widths which
exceed the mean level spacing. Further analysis in terms
of the random-matrix model were carried out later.!'~!3
In the present work we have established for the first time
that such fluctuations may exist in very simple systems
and we have unraveled their dynamical origin— the pres-
ence of classical IS trajectories. The width of the energy
autocorrelation function is proportional to y, the inverse
of the mean classical delay time. Its relation to the
Hausdorff dimension of the fractal Sr_. » was discussed
in Ref. 8. 7 is a classical quantity, and hence the width
of the autocorrelation function is O(h). The mean level
spacing in our two-dimensional model is O(4?2). Hence
in the semiclassical limit, the conditions assumed for the
validity of Ericson’s analysis always prevail.

Fluctuating cross sections are expected to occur when-
ever the relevant freedoms are not decoupled as a result
of very different characteristic time scales, or some sym-
metry which renders the dynamics separable. These
fluctuations should be observed in experiments in which
the initial and final conditions (quantum numbers and
the energy) are well resolved. Such high resolutions are
now becoming available in the study of atomic and
molecular reactions.

We would like to thank Dr. Bruno Eckhardt for very

480

illuminating discussions. One of us (U.S.) is grateful for
the hospitality extended by Professor H. Walther during
his stay at the Max Planck Institute for Quantum Op-
tics.

IC. C. Rankin and W. H. Miller, J. Chem. Phys. 55, 3150
(1971).

2W. H. Miller, in Advances in Chemical Physics, edited by
K. P. Lawley (Wiley, New York, 1975), Vol. 30, p. 77.

3D. W. Noid, S. K. Gray, and S. A. Rice, J. Chem. Phys. 84,
2649 (1986).

4C. Jung, J. Phys. A 19, 1345 (1986); B. Eckhardt and
C. Jung, J. Phys. A 19, L829 (1986).

SB. Eckhardt and H. Aref, Philos. Trans. Roy. Soc. London
(to be published).

6B. Eckhardt, J. Phys. A (to be published).

7C. Jung and H. J. Scholz, J. Phys. A 20, 3607 (1987).

8M. Hénon, “The Inclined Billiard” (unpublished); J. M.
Petit and M. Hénon, Icarus 66, 536 (1986).

9T. Ericson, Phys. Rev. Lett. 5, 430 (1960).

10D, Brink and R. Stephen, Phys. Lett. 5, 77 (1963).

1p. Agassi, H. A. Weidenmiiller, and G. Mantzouranis,
Phys. Rep. 22C, 145 (1975).

12M. Kawai, A. K. Kerman, and K. W. McVoy, Ann. Phys.
(NY) 75, 156 (1973).

I3T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pan-
dey, and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981).

14F. J. Dyson, J. Math. Phys. 3, 140 (1962).

I5C. E. Porter, Statistical Theory of Spectral Fluctuations
(Academic, New York, 1965).

160. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev.
Lett. 52, 1 (1984).

I"M. V. Berry, Proc. Roy. Soc. Lond. A 400, 229 (1985).

18y, P. Maslov, USSR Comput. Math. Phys. 3, 744 (1962);
K. Mohring, S. Levit, and U. Smilansky, Ann. Phys. (NY)
127, 198 (1980).



