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A Priori Calculation of the Optical-Absorption Spectrum of the Hydrated Electron
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The optical-absorption spectrum of an excess electron solvated in a molecular sample of liquid water

at 300 K has been calculated with use of solvent configurations generated via path-integral simulation

and subsequent solution of the excess-electronic eigenvalue problem. Electronic transitions from an s-

like ground state to three bound, localized, p-like excited states dominate the broad asymmetric spec-

trum with excitations into an apparent continuum following at higher energy. Asymmetric distortions

and radial fluctuations of the solvent cavities contribute comparably to the spectral broadening.

PACS numbers: 71.55.JV, 71.20.Ad, 78.40.Dw

Numerous experimental and theoretical studies have

attempted to elucidate the origin of the broad and struc-
tureless optical-absorption band of solvated excess elec-
trons in polar fluids, yet little agreement about the
correct physical interpretation of the absorption process
has been achieved. ' Arguments have been advanced in

favor of very diff'erent models, and fits of the observed

spectra are possible on the basis of mutually exclusive as-

sumptions.
In this Letter, we present a simulated absorption spec-

trum for an excess electron in liquid water at room tem-

perature. In contrast to previous model calculations, our
treatment is quantum statistical with the explicit compu-
tation of a thermal ensemble average over the solvent,
with use of a large number of solvent molecules to repre-
sent the liquid. Most importantly, we invoke no adjust-
able parameters in the calculation. The results provide

the first a priori description of the physics underlying the
optical spectrum of the hydrated electron.

In our approach, we successively apply two computa-
tional procedures. First, we generate an ensemble of sol-

vent configurations that is representative of the state of
the hydrated electron at room temperature. This is ac-
compjished by path-integral simulation of an excess elec-
tron immersed in a sample of 500 water molecules. In a
second stage, we compute, for each of 600 solvent

configurations, the excess-electronic eigenstates by expli-
cit solution of the one-particle Schrodinger equation.
Averaging over solvent configurations, we obtain the
electronic excitation spectrum within the Franck-Condon
approximation.

The first part of the present calculation is similar to
that described in detail earlier. ' A complete report of
the full technical details used here will be provided in a
later paper. Here, we outline our procedure.

While the excess electron is treated as a quantum par-
ticle, the water molecules are described classically; their
interactions are modeled with the well-tested simple
point-charge pair potential. The interactions between
excess electron and solvent molecules are described by an

approximate pseudopotential described by us recently.
It accounts for static Coulomb interactions, polarization

effects, and orthogonality requirements between the
excess-electronic wave function and solvent-molecular
wave functions. The solvent molecules and excess elec-
tron are confined to a cubic box of side length 24.66 A,
corresponding to a density of 0.977 g cm, and the usu-

al periodic boundary conditions are employed.
Accounting for the quantum dispersion of the excess

electron by a discretized path-integral representation,
we sample from the canonical ensemble of this system
(T=300 K). We employ a path-integral discretization
of P =1500. After equilibration, 30000 configurations
are generated by the method of constant-temperature
molecular dynamics, corresponding to a classical water
simulation of 60 ps. All pair interactions are evaluated
with a spherical cutoff' that is smoothly applied between
7.5 and 8 A radial distance.

Every fiftieth configuration is used in the subsequent
spectral evaluation, a total of 600 configurations. For
the present work, we compute all electron-water interac-
tions without cutoff' in the minimum-image convention,
using the configurations generated from the path-integral
simulation. The additional interaction range produces
an additional binding energy for the electronic states of
approximately 0.9 eV, compared with that evaluated
with the spherical cutoff, displacing the density of states
essentially uniformly. However, no statistically
significant effect on the calculated absorption spectrum
is observed. Neglect of even longer-range interactions
restricts our ability to calculate absolute energies pre-
cisely, with a small additional binding energy being ex-
pected in an infinite solvent sample.

The one-electron eigenstates are obtained very
e%ciently with a regularly spaced three-dimensional grid
for numerical representation in real space and a split-
Fourier propagation ' in imaginary time to project the
ground state from a trial function. Excited states are
obtained by the same procedure after orthogonalization
to all lower energy eigenstates. We evaluate the ground
and the first nine excited states for each of the 600 sol-

vent configurations. All states are evaluated with use of
a numerical grid of 16 points per dimension within a
cube of edge length 12.33 A, centered at the electronic
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center of mass of the electron path from the path-
integral simulation. Doubling both values produces no
statistically significant changes from the results present-
ed below.

The equilibrium structural characterization of the
simulated system has been reported previously. For the
purpose of the present investigation, we emphasize only
that the excess electron creates a polaron-type state, with
the excess electron occupying a cavity in the polarized
solvent.

The density of states obtained is shown in Fig. l.
Three kinds of states can be clearly distinguished as indi-
cated in the figure. The ground state (Eo) is always a
bound state as expected for an excess electron in a polar
fluid. ' Its energy distribution is centered around —3.4
eV which is the sum of —5.7 eV potential energy and
+2.3 eV quantum kinetic energy. The extreme values
found —4.8 and —2.4 eV, illustrate that the fluctuation
amplitude is clearly large, exceeding thermal energies
(0.025 eV) by more than 1 order of magnitude. This is

not surprising if it is recalled that the binding energy of a
single molecule in pure liquid water fluctuates compar-
ably. '

A typical ground-state wave function is shown in the
upper left-hand panel of Fig. 2; it displays qualitatively
the symmetry properties of an s-type state. The mean
ground-state radii, defined by

(r~)—= („p(r)/rldr)
or

(2)

yield 1.9 and 2. 1 A, respectively. A difference between
the two radii is observed in any given configuration:
(rg —r~) =0.2 A, and, hence, the ground-state wave

functions are relatively broadened in comparison with

ideal Gaussian wave packets.
The mean square fluctuation of the ground-state ra-

dius is only about 0.1 A, with use of either of the two
definitions given above, relatively small compared with
that conjectured, e.g. , for the case of excess electrons in

liquid ammonia. "
Returning to Fig. 1, it is clear that the density of

states for the lowest three excited states (E~, E2, and

E3) is similar in appearance to that for the ground state.
The wave functions corresponding to this three-state
manifold are always found to be localized with a radius
of about 3 A; contour plots for a typical configuration
are shown in Fig. 2. It is obvious that these orbitals are
p-like with one node and with approximately mutually
perpendicular orientations.

The energetic distribution of the p-like states extends
between —2.4 and +0.8 eV, and thus only the energeti-
cally highest of these states, and this only occasionally, is
unbound. Most importantly, this triple of localized
states is distinctly nondegenerate: The most probable
energy splitting between the lowest (E~) and highest
(Es) eigenvalue is about 0.8 eV, and in 95% of the
configurations, this splitting exceeds 0.4 eV. This remo-
val of degeneracy reflects typically distorted solvent cavi-
ties. Although the significance of this phenomenon has
been pointed out, the importance of this feature, mani-
fest here, is at odds with previous estimates based on
simplified models. '
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FIG. 1. Density of electronic states.
FIG. 2. Electronic wave-function contour plots for typical

ground state and lowest three excited states.
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FIG. 3. Simulated optical absorption spectrum of an excess
electron in liquid water. Inset: Decomposition into separate
subbands for the three s-p transitions.
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Finally, for the fourth and all higher excited states

(E4, . . . ) a monotonically increasing density of states is

found that is analogous to the pattern for a free-electron
gas. The distributions shown is truncated at an energy
of +0.6 eV which is the lowest energy found for the
highest (ninth) excited state calculated here. The fourth
and higher excited states are in fact delocalized in the
sense that the electronic amplitude does not decay
significantly over the range of the computational grid.
For the limiting case of free states in an infinitely large
box, an energetic continuum is expected.

In principle, the lower edge of the conduction band
can be inferred from Fig. 1. With the occasional excep-
tion of the fourth excited state, all "continuum" states lie

at positive energies. Accordingly, the band edge can be
located at a vanishing or just slightly negative energy.

We now turn to the absorption spectrum. The optical
spectrum corresponding to unpolarized incident light is

displayed in Fig. 3. We show the line shape obtained up
to an energy of 4. 1 eV, which corresponds, as above, to
the lowest energy found for a transition into the highest
calculated (ninth) excited state. The total oscillator
strength we obtain is about 94% (or 92%%uo if we only in-

clude the transitions up to AE =4.1 eV as in Fig. 3) of
that required by the Thomas-Reiche-Kuhn sum rule, and

consists of 31%, 30%, 28%, and 5% for transitions into
the first, second, and third p-states and into the higher-
energy delocalized states, respectively. An exhaustive
treatment of the higher excited states would yield the
complete oscillator strength. From the experimental ab-
sorption band, an oscillator strength of about 0.75

has been deduced, with an uncertainty as high as
20%-30%. An additional band in the uv region has
been reported, but appears to be due to perturbed elec-
tronic transitions of the solvent. ' Therefore, the agree-
ment between experiment and the calculated one-
electron model oscillator strength is satisfactory.

The calculated spectrum has its absorption maximum
at an energy of about 2.4 eV and a half width of about
1.1 eV; the experimental figures are 1.7 and 0.8 eV, re-
spectively. ' The overestimate of the band maximum is
in line with previous path-integral estimates for both the
hydrated ' and ammoniated' electron. This discrep-
ancy is likely due to inadequacies of the model electron-
water pseudopotential. The pseudopotential of Wall-
qvist, Thirumalai, and Berne' yields an estimated aver-

age excitation energy closer to the experimental value,
although a corresponding band shape remains to be
determined. We emphasize in this context that we de-
scribe the simulated system without any attempt to ad-

just parameters to produce quantitative agreement with

experiment. It is therefore particularly noteworthy that
the half width of the absorption spectrum is slightly
overestimated by our calculation, in contrast to earlier
more empirical models. '

The present simulation approach allows the assign-
ment of the physical origin of this large half width.
First, the solvent cavities IIuctuate in radial size and thus
cause a variation of the excitation energies as expected
from a simple particle-in-a-box model. Second, the cavi-
ties are nonspherical, so that excitations into the p-type
states are typically significantly nondegenerate. In the
inset of Fig. 3 we show the decomposition of the separate
subbands for the s-p transitions. The energy splitting is

typically 0.4 eV for adjacent s-p transitions and accord-
ingly about 0.8 eV between the lowest (~&o) and
highest (~3o) s-p transition.

The contributions to the width from radial fluctuations
and cavity distortions are comparable in our simulation.
That is, only about half of the total half width is ob-
tained from a spectrum obtained by averaging over the
s-p transitions: LE = (LE ]p) +AE2p+LE3p)/3. In gen-
eral, it appears that the significance of asymmetry has
been underestimated in simpler models, even in those
which emphasize heterogeneous broadening. '

Of course the extent of nondegeneracy fluctuates with
fluctuations in the solvent cavity asymmetry, including
contributions from both position and orientation of the
solvent. If the ground-state electronic distribution
(which reIIects the full potential surface) is translated
into the geometry of an ideal rotational ellipsoid, the
diff'erence between the lengths of the smallest and largest
principal axes is on the average about 8%, and the distri-
bution of this difIerence is centered at a nonzero value.
The deviation from a symmetric distribution is therefore
relatively small. Nevertheless, since the number of dis-
torted configurations (i.e., those with two unequal princi-
pal axes) must greatly exceed the number of symmetric



VOLUME 60, NUMBER 5 PHYSICAL REVIEW LETTERS 1 FEBRUARY 1988

configurations, the most probable result at finite temper-
ature is that of a somewhat asymmetric potential sur-
face. What is perhaps surprising, and not simply pre-
dictable, is the relatively large size of the splitting in the
p-type energy levels. Ho~ever, the observed result is
only about twice as large as that expected for the sim-

plest possible model, that of a particle in a box with cor-
responding asymmetry in the side lengths.

We have no reason to believe that the importance of
asymmetry found here is peculiar to water or even polar
liquids. The arguments favoring asymmetry are generic
to Auids, although the quantitative correlation between

energy splitting and asymmetry is likely to be fluid

dependent (the particle in a box being one extreme cari-
cature). Solvated-electron spectra, in fact, exhibit sub-
stantial variation in their quantitative characterization
from one medium to another. The expectations ex-
pressed here must, of course, be tested by further studies
of the type described in the present article for a variety
of liquid media.

Another important but poorly understood feature of
the hydrated-electron spectrum is its pronounced asym-
metry. Figure 3 demonstrates that our simulated spec-
trum is indeed asymmetric, although the high-energy tail
is not fully developed. Some asymmetry is obtained
from consideration of only the s-p transitions as can be
seen from the inset of Fig. 3. Of at least equal impor-
tance, however, are the transitions into energetically
higher, delocalized states. As described above, the con-
tribution of these bound-continuum transitions to the to-
tal oscillator strength is about 10%.

Two questions not addressed by our model calculation
are the significance of vibronic coupling with the solvent
modes and of nonlocal excess-electronic transitions be-
tween diA'erent potential wells. Both have been conjec-
tured' as contributing to the line shape. We refrain
from adding to the already abundant speculations about
these phenomena here. The role of such effects in pro-
viding quantitative agreement between theory and exper-
iment remains to be determined. We note that the issue
of motional narrowing does not arise within the present
calculation, since the computed spectrum is the envelope
of a distribution of b-function peaks, and the full width
is so large as to rule out a contribution from averaging
over solvent motions.

In summary, we have calculated the optical-absorption
spectrum of the hydrated electron directly from the
quantum statistical mechanics of a Hamiltonian based
on elementary principles. Its physical nature is then sub-

ject to direct and detailed analysis. Our calculations
show that the dominant spectral excitations in the equi-
librium hydrated state are to bound localized p-type
states, with a high-energy tail comprised of excitations
into an unbound, apparently delocalized continuum. The
large spectral half width follows from comparable contri-
butions due to radial fluctuations of the solvent cavities
and their ubiquitously distorted shapes. In consideration

of the similarity of solvated-electron spectra in many po-
lar liquids, it is likely that our conclusions also apply to
the spectra of excess electrons in these other disordered
media.
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