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Mnlticritical Point in the Magnetic Phase Diagram of CsNiCl3
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A phenomenological Landau-type free energy forms the basis of a theory for the low-temperature
magnetic properties of CsNiC13 under the influence of an applied magnetic field. Three magnetically or-
dered phases, as well as the paramagnetic phase, are found to coexist at a novel type of multicritical
point representing the intersection of one line of first-order transitions and three lines of second-order
transitions in the 0-T phase diagram. The temperature dependences of the critical fields are in good
agreement with corresponding experimental data. Similar results are predicted for CsNiBr3.

PACS numbers: 75.30.Kz, 75.40.Cx

There has been considerable interest over the past
twenty years in a large class of materials with the gener-
ic chemical formula ABX3 where 8 is a magnetic ion.
Much of this interest has been due to the discovery' of
quasi one-dimensional magnetic short-range order at low

temperatures along the c axis of hexagonal crystals such
as CsNiF3 and CsNiC13. Although it was early recog-
nized that at sufficiently low temperatures most of these
materials also exhibit a phase transition to a magnetical-
ly ordered state, ' it is only recently that detailed exper-
imental and theoretical work on this aspect of these com-
pounds has been pursued (see Johnson, Rayne, and
Friedberg, Matsubara, Rayne, Collins, and White, 6

Miyashita, Kadawaki, Ubukoshi, and Hirakawa, s Zhu
and Walker, 9 and Plumer and Caille' for some recent
examples relevant to the present study). From the re-
sults of these studies it is becoming increasingly apparent
that this class of materials can have a surprisingly wide
range of magnetically ordered phases, many of which are
quite novel.

In this Letter, we report on the results of an investiga-
tion of the magnetic phase diagram of CsNiC13 based on
a recently developed' nonlocal Landau-type free-energy
functional. The experimental results of Johnson, Rayne,
and Friedberg, 4 who determined the magnetic phase
boundaries as functions of temperature and applied mag-
netic field using susceptibility data, served as an impetus
for this work. For the case with H directed along the
hexagonal c axis, they confirmed the previously ob-
served"' spin-ffop transition and also found results sug-
gestive of a multicritical point representing the intersec-
tion of one line of first-order transitions and three lines
of second-order transitions (see Fig. I). It is a con-
clusion of the present study that this unusual type of
multicritical' point is predicted by an analysis of the
Landau-type free energy. In addition, we are able to
determine the nature of the magnetic ordering which
occurs in each phase.

The formulation of a nonlocal Landau free-energy
functional of the spin density is presented in Ref. 10 (to
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FIG. 1. Magnetic phase diagram for Hllc showing the
boundaries between phases 1-4 as described in the text. Filled
circles are from the experimental data of Ref. 4 and the lines
represent the fitted theory. Open circle denotes the multicriti-
cal point.

be referred to as I) and used there to study the magnetic
phase transition in CsNiF3. The interest here, as in I, is
in a temperature regime well below the dimensionality
crossover temperature where weak interchain exchange
coupling produces an effectively three-dimensional mag-
netic system. Interesting results associated with the
higher-temperature quasi one-dimensional magnetic
properties of CsNiC13 have recently been published. '

Both compounds CsNiF3 and CsNiC13 belong to the
same hexagonal symmetry class P63/mme and have the
same form of free energy with differences only in the
magnitudes and signs of the expansion coefficients. The
spin density is assumed to have the form

s(r) -(V/N)ga p(r) b'(r —R),

p(r) m+Se'~'+S e

where R denotes the lattice positions of the Ni + ions, m

1987 The American Physical Society 45



VOLUME 60, NUMBER 1 PHYSICAL REVIEW LETTERS 4 JANUARY 1988

is the uniform magnetization induced by the 6eld H, and S and Q are the polarization and wave vectors, respectively,
characterizing the long-range magnetic ordering. The free energy appropriate for the study of the magnetic phase
transitions in CsNiC13 is given by

F=AgS' —A. IS, I'+BUS'+ 2 82 IS S I '+
2 Apm' —

2 A, pm.'+ 1 83m'+284Im S I '+85m'S' —m H,

where S =S S and

(4)

The zero-6eld, low-temperature magnetic structure of CsNiC13 has been determined by neutron diffraction ' to be
characterized by antiferromagnetic ordering along the c axis with an additional period-3 modulation in the basal plane.
In I it is shown that (for weak magnetic dipole coupling) the function Ag is minimized for wave vectors consistent with
this structure. The term —A, IS, I (A, &0) arises from single-ion anisotropy, which is known to be small' in this
material.

Zhu and Walker have used a free energy similar to (3) to investigate the zero-field magnetic phase transitions in

CsNiC13. The principal features of their results (which are in agreement with neutron-diffraction data ) can be sum-

marized as follows. The polarization vector is written as

S S(+i$2,
where S& and S2 are real vectors given by

S~ ScosPi, Sz S sinPp2,

with i along the c axis and p2 in the basal plane. Use of (5) and (6) in (3), with H =m 0, gives

F-A~S + —,
' BS +(A, —282S )S sin P+282S sin P,

(5)

(6)

(7)

where

A~ a(T —TNi), TNi Tg+A /a, (8)

8 28~+82 and 8~ & 0, 82 & 0. It is clear that the free
energy (7) describes two phase transitions with order pa-
rameters S and p. Minimization of (7) results in the fol-
lowing description of the zero-field phases. For T & Tv ~,

S 0 which we call the paramagnetic phase. In the re-
gion Tv2 & T & T„~, P 0 and S —A~/8 which de-
scribes a linearly polarized phase with S along the c axis.
In the region T & TIv2, there is a basal-plane component
of S with sin P —A2/(48~S ) where

and b 8/(282). This describes an elliptically polarized
spin structure where $ is confined to the zp2 plane. Zhu
and Walker have shown that p2 can lie along one of the
three basal-plane crystallographic axes as a result of
sixth-order anisotropy contributions to the free energy in

agreement with neutron-diffraction data. ' A variety of
experimental results (see Ref. 8 for a review) give

(10)S~ ScosP[sin8p~+cos8i],

where 8 is to be determined and S2 retains its zero-field
form (6). In this expression, p~ is chosen to be in the
basal plane perpendicular to p2 as this configuration min-

imizes the term —,
' 82 I S S I

in (3). The free energy can
now be expressed as

+28S +483m —IH,F=C,S —CeS cos 8+CPS sin P+282S sin P —,
'

Apm

!
Tlv ~ =4.85 K and Tiv 2= 4.40 K.

We consider now the effect of applying a magnetic
field along the c axis. The terms ——,

' A, pm, (A p & 0)
and —m H in (3) are minimized with m parallel to H.
Any deviation from this con6guration is due to the term
84 I m S I which is small compared with

I
m H I (for

small S). We thus assume that m is also along the c
axis. Field-induced changes in the zero-field form of the
polarization vector S, given by (5) and (6), are also
caused by this coupling term which (with m II i) is now

given by 84m I S, I . It is assumed here that 84 & 0 so
that this term is minimized with I S, I 0. A simple
generalization of (6) which allows for the possibility that

I S, I 0 with S~WO is to take

where C, =Ay+85m, Ce=A, —284m, Cs Cecos 8
—282S, and Ap Ap A p=a(T —Tp). In addition to
the zero-6eld order parameters S and p, the angle 8 also
characterizes a phase transformation; it undergoes a
first-order change from its low-field value 8 0 to a
high-field value 8-z/2, which describes a spin-flop tran-
sition. It is also clear from (11) that the coefficients C„
Cg, and Cp all vanish at a single multicritical point in the

T T~) —A, 86/(2a84), (12)

H~ (A, /284) ' [6+(A, /284) (83 —85)], (13)

phase diagram. This point (T,H ) can be determined

by our solving the equations C, =O, C& 0 along with
S 0 and 8F/8m 0 to obtain
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where 84-284+85 and where 6-Ap —Ag is inde-

pendent of temperature. From Fig. 4 of Ref. 4 the esti-
mates T =-4.6 K and H =-2.29 T can be made.

Minimization of the free energy (11) with respect to
S, P, and 8 reveals that there are four magnetic phases
characterized as follows:

(1) paramagnetic: S 0; (2) linear: P-O, 8-0; (3)
elliptical: sin p —Cp/(482S ), 8 0; (4) 120' struc-
ture: P x/4, 8 z/2. The so-called 120' structure is

simply a helically polarized phase with an associated
wave vector in the plane of Si and S2 (the basal plane),
as discussed in I.

The temperature dependences of the critical fields
which determine the phase boundaries associated with
the second-order transitions 1-4, 1-2, and 2-3 can be
obtained by an analysis of the free energy and are given

by (see Fig. 1)

H, - ( —Ag/85) '~'[a+ (1 —83/8 )Ag j,

H -(—A /Bs) ~'[Ap+(83/8$)Ail,

(14)

(is)
i/2-

A2
HN2

87
86 &s

Ap —2 A i+ A2, (16)
8) 87

HNi ( —A i/85) ' [6+A, + (1 —83/85)Ai],

HN2 ( A 2/85) [~+Ag + (85/82)A& (83/85)A 2 j ~

where 87 884/82 —Bs and Bs 83 —28s/B. The
spin-fiop phase boundary H r(T) must be determined
numerically by a comparison of the free energies for
phases 3 and 4. This has been done (and the above
analytical results have been verified) with use of esti-
mates for the phenomenological coefficients which ap-
pear in (11) by a comparison of the above theory with
the experimental data of Ref. 4, as described below.

For these numerical estimates, cgs units (with the
magnetization expressed in electromagnetic units per
gram) are used. From the expression m —,

' A, /84
(valid at the multicritical point) and the magnetization
data, the estimate ,' A, 84=1.92 can b—e made. Extrapo-
lation of the data for H, (T) to zero 6eld gives Tg=-4.3
K. Comparison of the expressions for H and H, (5.5 K)
with the data then yields 6=-1.56&&10 and 83 85
=460. The data and expressions for T —T~ ~,

TN i
—Tg, and TN i

—TN2 then give A, /a =- 0.55,
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FIG. 2. Phase diagram for H&c showing results of the
theory (lines) and experimental data (circles) of Ref. 4.

b Bi/82+ —,
' =-0.82, 84/a=-0. 14, and 8 /a=- —0.16.

All of the parameters of the theory except Bi (or
equivalently 82) and a can thus be determined by m at
(T,H ), H, (T) and the three points in the phase dia-
gram TNi, TN2, and (T,H ). It is then possible for us
to fit H,r(T), as determined numerically, to the data by
choosing any reasonable value for Bi/a and subsequently
adjusting the value of a. The choice Bi/a 0.1 gives
a =400 and the theoretical curves shown in Fig. 1 result.
Because of the large nuinber of adjustable parameters,
the resulting excellent agreement between theory and ex-
perimental data may only indicate that the model
presented here gives a correct qualitative understanding
of the magnetic phase diagram.

As a further check that the above model for the mag-
netic phases of CsNiC13 is correct, the phase diagram for
the case with H applied in the hexagonal basal plane can
be determined and compared with corresponding data
from Ref. 4. It is assumed here that m is parallel to H
and perpendicular to p2 and that the zero-6eld structure
of the polarization vector S given by (5) and (6) remains
valid. These assumptions are consistent with the previ-
ously made arguments for the case of H lli. The mag-
netic phase diagram then consists of the three phases 1,
2, and 3 with phase boundaries (see Fig. 2) given by

where A=A+A, p. All of the parameters appearing in these expressions have been previously determined except for
A, p. The choice A,p=400 results in the good agreement with the measured data as shown in Fig. 2.

Some of the gross features of the H-T diagram can be understood with simple arguments. The suppression or
enhancement of the critical temperatures with a magnetic field is a consequence of H (and m) being respectively paral-
lel or perpendicular to the spin S of the lower-temperature ordered phase. This view is consistent with the negative
slope of HN~ with Hllc and the positive slopes of the other second-order transition lines in Figs. 1 and 2. These
features can be traced to the result that 84 is positive and 85 is negative in the free energy (3).

We can tentatively attribute to the different phases in Fig. 1 the following effective spin dimensionalities n, : n, 1 in
the linear phase and n, 2 for both the elliptical and 120 structures. As a result, the effective spin dimensionality at
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the rnulticritical point should be n, 3. Since this mul-
ticritical point also represents a novel convergence of
three second-order phase-transition lines with the first-
order spin-flop line, interesting critical behavior may
occur in this region of the phase diagram; in particular,
behavior associated with effective spin dimensionality
crossover.

CsNiBr3 exhibits two magnetic phase transitions in
the absence of a magnetic field at Ttvt=-14. 3 K and
Ttv2-=11.8 K where a variety of experimental data'
suggest that the magnetic orderings involved are the
same as in CsNiC13. A similar magnetic phase diagram
can thus be expected for this material and measurements
of its magnetic properties in an applied magnetic field
are desirable.

In summary, it has been demonstrated here by an
analysis of a recently developed'o nonlocal Landau free-
energy functional, in conjunction with the experimental
results of Ref. 4, that a novel type of multicritical point
exists in the magnetic phase diagram of CsNiClq. Fur-
ther experimental work (e.g., neutron diffraction), to
verify the predicted spin structures, and theoretical study
of the associated critical behavior are desirable.
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