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Quasiperiodicity and Long-Range Order in a Magnetic System
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We study the 1D quasiperiodic quantum Ising model in a transverse field, which exhibits long-range
order above a critical coupling and describes the phase diagram of the 2D classical Ising model quasi-

periodic in one direction. We numerically determine the correlation length, magnetization, and energy
spectrum of this system. The site dependency of the magnetization is described by a new order parame-
ter, the width of the magnetization. The scalings b and f(a) associated with the Cantor spectrum are
found to exhibit special features at the onset of long-range order.

PACS numbers: 75.30.Kz, 64.60.Ak, 64.60.Fr

The investigation of systems displaying quasiperiodici-

ty (QP) has acquired direct experimental relevance since
the recent construction of Fibonacci superlattices. ' The
many studies carried out for the one-dimensional tight-
binding s and phonon models have shown that quasi-
periodicity does introduce a whole new set of properties
for such systems. In this Letter we study a model of
direct importance for magnetic superlattices as the two-

dimensional Ising model is relevant to magnetism. This
model is the one-dimensional QP quantum Ising model
in transverse magnetic field (1D QPIM) and is

equivalent to the following Hamiltonian, up to a similari-

ty transformation:

H —QJA(J)tr (J)o' (j+I)+tr (j).
Here the tr, (j) are Pauli matrices and the couplings
A, (j) form a QP sequence with two values A, and X' rk.
In our study QP is characterized by the golden mean ra-
tio mrs (45+I)/2. s We found that similarly to the
pure Ising case (r =1), the model undergoes a phase
transition for a critical value of the coupling (A, A,, )
above which there exists long-range order (LRO).
Hence the novel feature of this model not present in the

QP systems studied in the past is the existence of
LRO. The interest in study of the 1D QPIM is twofold.
(i) At zero temperature this theory describes the phase
diagram, and so the critical region, of the two-

dimensional classical Ising model having QP in one of
the directions (2D QPIM). Hence the following ques-
tion is addressed here: How does the absence of transla-
tional invariance modify the LRO features and affect the
scaling properties of the 2D QPIM? (ii) The energy
spectrum of the 1D QPIM forms a Cantor set. Then the
main question under investigation is the following: How
do the scaling properties of this spectrum change as the
model undergoes a phase transition in the coupling con-
stant and acquires LRO?

We study the 1D QPIM by first expressing it as a
one-dimensional fermionic model. The model is quadra-
tic in the fermionic fields and displays a feature not seen
in all the previous studies of QP models. The fer-
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FIG. 1. Magnetization vs site at criticality for a chain of
144 sites, r 0.5.

mionic number is not conserved and the model cannot be
expressed in position space as a single-fermion problem.
Therefore to the best of our knowledge this is the first
time a QP model exhibiting LRO is investigated. To an-
alyze the 1D QPIM we have used a special method
developed by Lich, Schultz, and Mattis long ago.

We now summarize our results for the zero-temper-
ature properties of (1) in two parts. All the results of
this paper are numerically obtained. The first part of the
results also concerns the thermodynamics of the 2D
QPIM. The second one addresses the energy spectrum
of the 1D QPIM.

(i) The 1D QPIM exhibits LRO above the critical
coupling. We deduce from our numerical analysis done
on finite chains that the critical couplin depends upon r

1 a2
for the infinite chain as X,(r) 1/I r I

'. The correla-
tion length of the 2D QPIM diverges with v=1 exactly
like in the pure Ising model. QP results in local mag-
netization varying from site to site (Fig. 1). To charac-
terize such variation we introduce a new order parameter
called the width, w(A, ,r), defined as the difference be-
tween the maximum and the minimum magnetization at
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value. We also computed the global scaling properties of
the Cantor-set spectrum using the so-called f(a)
curve ' (Fig. 4). This function shows a characteristic
shape change as A.~ A, The Hausdorff and the other
higher moments of dimension were found to attain their
maximum values at criticality.

In our numerical study, the QP system is approximat-
ed by a sequence of periodic systems with progressively
larger unit cells of size F„. The F„'s are the Fibonacci
numbers obtained by optimal rational approximants to
o'g, as F„/F„t, F-„F„(+F„—-z with F) F2 l.
The 1D QPIM corresponds to the so-called r continuum
Hamiltonian" of the 2D QPIM. The latter model has
couplings J„and J„' that alternate in, say, the x direction
according to the prescription in Ref. 5. In the y direc-
tion all couplings are equal to J». The transfer matrix
for the 2D QPIM is given by

FIG. 2. Magnetization of all sites vs coupling (chain of 89
sites, r 0.5). The solid line plots the function M(A, ) 0,
A. ~X,; M(k) (I —I/k2)'4, A, &X„which is the pure Ising
magnetization for an infinite chain.

T-exp pJ»'g, a„(j) ~

xexp /3+, J (g)r», (J)r», (J+1),

given values of A, and r (Fig. 2). We claim that for an
infinite system the width should vanish for X (k, and de-
cay exponentially to zero for X»k„attaining its max-
imum value at A, We also find that in the neighborhood
of the pure Ising case (r = 1), the critical width has the
linear dependency w(A, „r)ce I r. —

(ii) Analogous to previous studies, the energy spec-
trum is found to be a Cantor set for all couplings includ-

ing the critical one. The index b, which describes the
scaling of the total allowed energies with the size of the
system, has linear dependence on A, (Fig. 3). Numerical
evidence indicates that this dependence becomes nonana-
lytic at the critical point, where b attains its minimum p (J',&,r) -&G

I r» (J')r» (J'+it/)
I G), (3)

where tIJ» —(lntanhPJ»)/2. To define a smooth r
continuum limit, J~ must grow large while the couplings
J,(j) become weaker so that the following proportionali-
ty holds for each site: pJ, (j) )1,(j)exp( —pJ»). There-
fore the parameter r previously defined is temperature
independent, r J,'/J„and A, plays the role of inverse of
temperature for the 2D QPIM. To describe the phase
diagram of the 2D QPIM by means of r and k, we stud-
ied two quantities of the quantum chain (1). The first is
the mass gap, Eo(l,,r), defined as the difference between
the first excited- and ground-state energies. The second
one is the long-range correlation,
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FIG. 3. Plot of 8 vs A, for r 0.5 and the chain sizes ranging
from 13 to 610 sites.

FIG. 4. F(a) curve for three different couplings for r 0.5
for chain sizes ranging from 13 to 610 sites.
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where
~
G) is the ground state of (1) and lV is the half-

way point of the periodic chain, equal to F„/2 and
(F„+1)/2 for even and odd sites, respectively. Eo(k„,r)
is the inverse of the correlation length for the 2D QPIM.
The relation Eo(),r) =2c

~
k —i,,(r) ~

is true for all
values of ) (r&0 or ~) in the neighborhood of k, ; hence,
v=1. The constant c is found to be equal to I/X, (r) in

the neighborhood of the pure Ising case (r = 1). The
fact that the exponent v is identical to that in the pure
Ising model implies that some of the characteristics of
the model become insensitive to the QP in the critical re-
gime. It is well known ' that p„(J',k, r) describes the
magnetization of the Ising model at all temperatures.
Above A,, the correlation p„(j,),,r) drastically changes
from site to site (see Fig. 1). Our numerical results show
that for a finite chain the width goes as

w(k, r) = (k/X, )" ',

w(k, r) = exp( —KX),

(4a)

(4b)

where E is a function of r (see Fig. 2). Therefore for the
infinite system we conclude that w(l, r) 0 for A, (X, .

We have studied the eigenvalues of Hamiltonian (1)
as a function of A, . Like other QP systems, this model
has a Cantor spectrum in this case with nontrivial scal-
ing for all values of X. For an infinite chain, periodic
every F„sites, the spectrum consists of F„bands and
F„—1 gaps. In the limit of large n, the width of allowed
bands becomes narrower. So in this limit the sum of all
band widths, denoted by 8„,has measure zero and scales
with the size of the system as B„~F„,the exponent 6
being a function of k and r. Our numerical results give
the following linear dependency:

a(~) —S(),)=b (~, —~), ~&~„

S(X) —b(), ) =b+(X —~, ), X&)„
(5)

where b ~ are positive functions of r (see Fig. 3).
We have also studied the global scaling properties of

the Cantor-set spectrum by computing the f(a) curve

using a kind of partition-function formalism recently
proposed by Halsey et al. For each k, this function is a
continuous curve existing for a range of a values,

[a;„,a,„]. The exponent a is a local scaling exponent
characterizing the scaling associated with the integrated
density of states for a given energy. In general, this ex-
ponent is different in distinct parts of the spectrum.
Hence the curve f(a) describes the distribution of a's in

the whole spectrum. This curve acquires its maximum
value at the most probable scaling ao. The value f(ao) is

equal to the Hausdorff dimension DH of the spectrum.
For the pure Ising model (r =1) the energy spectrum is

continuous and the f(a) curve consists of just two points:
f(1)=1 and f(0.5) =0. The latter point corresponds to
the scaling exponent of the Van Hove singularities at the
band edge. Figure 4 shows the f(a) function for three

different couplings, X, &, k„and A, & corresponding re-

spectively to below, at, and above the critical coupling
for a given value of r. DH along with other higher-order
dimensions D~ have their maximum values at the critical
point k =X, and then slowly drop to zero as X 0 or

At criticality, D H is equal to 0.84 ~ 0.01
(r =0.5) and D —,the dimension characterizing the
most ramified part of the spectrum, becomes unity. Also

a,„achieves its maximum value of unity at criticality.
As Fig. 4 shows, the shape of the function undergoes a
characteristic change near the critical coupling without

any further drastic changes in its shape in the LRO
phase. However, our numerical results indicate that the
smoothness of this function, clearly present for X«k„
may disappear at criticality. This nonsmoothness around
a =0.5 may be partly related to the remnants of the Van
Hove singularities. Also, it should be noticed that
whereas the f& (a) corresponding to X& always lies in-

side f, (a), f& (a) corresponding to A, & intersects f, (a)
with a;„0as A,

Finally we describe the fermionic representation em-

ployed to study Eq. (1). By means of the Jordan-Wigner
transformation one rewrites (1) as

H =c+Ac+ (c+Bc++H.c.)/2, (6)

where c is the vector (ci,c2, . . . , cr„) and the cj's are an-

ticommuting fermionic operators. The nonzero elements
of the matrices A (A' =A ) and 8 (8' —8) are defined

as follows: Aj~
= —2, A~ J+ i

= —X(j), A i r„=—
X, (F„);

8~ ~+i —
A. (j), Bi r„=k(F„). Because of lack of

translational invariance, the usual method of Bogoliubov
transformation does not work here. This is because not

just momenta k and —k are mixed together but many
others as well. Hence to solve (6) one needs the method
of Lieb, Schultz, and Mattis. All our calculations are
numerical exact and have been done in position space
with periodic boundary conditions on the fermionic mod-
el. Hamiltonians (1) and (6) are only equivalent up to a
boundary term. However, the effects of this term are of
order 1/F„as shown in Ref. 7. The method requires the
diagonalization of matrix D =(A+8)(A —8) which

should be seen as a tight-binding model associated with

this problem. This matrix is also the initial point for
renormalization-group studies of the 1D QPIM. Our nu-

merical approach consisted of finding eigenvalues and
eigenvectors of the matrix D of various chain sizes of
maximum size 610. To determine p„, Wick's theorem is

used to express Eq. (3) in terms of Green's functions
which are directly evaluated from the eigenvalues and
eigenvectors of D. Most of our results were obtained
for 0.5 ~ r ~ 1.5. It should be pointed out that for r =0
or r =~, the model (1) becomes zero dimensional and

hence falls into a different universality class. In this lim-

it the gap vanishes exponentially with X. The crossover
to the regions r~ 0 and r ~ will be described else-
where. Our study indicates that at r = —1 the model
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shows no width in the magnetization. The renormal-

ization-group approach to this problem will shed light on

this peculiar result. At this point we found that k, =l
thus agreeing with our formula for X, (r).
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