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A theory for the growth of columnar microstructures in thin films is presented. The zone-I to zone-II
transition temperature is predicted. The surface morphology and the columnar grain structure are ob-
tained both analytically and numerically, and the scaling behavior of the columnar grain size with film
thickness is derived. Monte Carlo simulations are used to follow the evolution of the three-dimensional
zone-II microstructures and to account for the formation of film texture. These results agree with exper-

imental observations.

PACS numbers: 68.55.Jk, 68.55.Ce, 81.10.Bk

Over the last two decades a detailed experimental
classification of thin-film morphology has been made.!™3
The technological importance of such studies arises from
the relation between the physical structure of thin films
and desired film properties. Depending on the material
and the preparation parameters, high-rate vapor-de-
posited films are finding increasing applications as coat-
ings with high corrosion resistance, high hardness, con-
trolled porosity, etc.*

The microstructure of vapor-deposited films depends
sensitively on deposition conditions, among which the
substrate temperature 7T is of particular importance. For
high deposition rates (how high depends on the material,
but 10000 to 250000 A min ~! are typical?) three tem-
perature zones have been identified, each of which is
characterized by a distinct type of microstructure.!?
For 0<T<T, (where T;=03T, for metals,
=0.24T,, for oxides, and T,, is the melting temperature
of the film), the microstructure is porous and suggests
ballistic aggregation. For T,<T <T,; where T
=0.45T,,, the film consists of columnar grains separated
by metallurgical grain boundaries. For T, <7 < T,
the structure is that of equiaxial grains. These different
microstructural regimes are known as zones I, II, and
ITI, respectively.

The current state of understanding the deposition-
condition dependence of high-rate deposited film micro-
structure is based on a great body of experimental ex-
perience, but has suffered from lack of theoretical insight
and guidance. This Letter represents one of the first ven-
tures in this area. We present both a theoretical model
and numerical results which show that the columnar
zone-II microstructures are primarily controlled by the
competition between a growth instability inherent in the
deposition of finite-size atoms and the stabilizing influ-
ence of surface diffusion. One of the prime novelties of
this work is the consequences of the combination of both
these effects in their nonlinear form in the following evo-
lution equation for the film surface. The solution of Eq.
(1) below sheds a great deal of light on the mechanisms

governing the formation and evolution of film morpholo-
gy and microstructure as a function of deposition condi-
tions. This model quantitatively describes the zone-I to
zone-II transition temperature, the surface morphology,
the columnar grain structure, the dependence of the
grain size on film thickness, and the development of film
texture, closely matching the experimental observations.

With the assumptions of a constant uniform deposition
rate J of atoms of radius 8, and a finite surface dif-
fusivity (see Fig. 1), the evolution of the one-dimensional
surface profile h(x,?) is given by

hy=J — 8Jhy (1+h2) 32
=D A0 +h2) ~Vh, O +h2) 723, D)

Here D,=D;0,0%/KsT, where D, is the surface
diffusivity, o5 the isotropic surface energy density, Q the
atomic volume, € the number of atoms per unit area, and
KgT the thermal energy. We now briefly outline the
derivation of (1) (more details will be presented else-
where®). The first two terms on the right-hand side
(rhs) of (1) constitute the nonlinear version of the finite
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FIG. 1. The deposition geometry (x is the surface curva-
ture).
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atomic size effect discussed by Leamy, Gilmer, and
Dirks.® Since 80, the deposition actually takes place
on an imaginary surface displaced by én(x) from h(x)
[n(x) is a unit vector normal to A(x)]. The projection of
an element of A(x) on the x axis is varied because of the
above displacement. This variation multiplied by J is the
local growth rate of the surface, given (to leading order
in &) by the first two terms on the rhs of (1). Thus an
element of the surface A(x,?) receives a net flux of
atoms greater (for positive surface curvature x > 0) or
smaller (for k¥ <0) than J. The last term in (1) de-
scribes relaxation of the surface by a capillarity-driven
surface diffusion. This effect has been suggested by Mul-
lins? through numerous studies. Since the chemical po-
tential 4 of an atom on a curved surface is raised by
o; Ok over that of a flat profile, the velocity of atoms
along the surface is v; = — (D;/KgT)9u/ds (s is an ele-
ment of arc along the surface). Thus the velocity of the
surface normal to itself (due to surface diffusion) is
— 0 d(evs)/ds, where evy is the surface current of atoms.

Linearization of (1) about a flat surface shows that an
initial trial sinusoidal perturbation sin(kx) grows or de-
cays according to exp[(6Jk?—D.k*)t] for short times.
Thus a band of unstable modes exists with wavelengths
A=2n/k >ro=(472D,/6J) ", and with the most unsta-
ble mode at A=A, =+2A;. Perturbations with wave-
lengths smaller than the diffusion length Ao(7) are
smoothed by surface diffusion, whereas long-wavelength
perturbations grow unstably. As a result of the discrete
nature of the atoms in the film, surface diffusion is
ineffective when the diffusion length Ao(7) is smaller
than a few times §. Equating Ao(7) with the minimum
physically meaningful diffusion length né (where n is a
constant of order 1 to 10) yields a critical temperature
below which surface diffusion plays essentially no role in
the microstructural evolution. If we substitute o; =103
dyn/cm, 0 =2x10"2 cm? 6=4x10"% cm, J=2
x 1073 cm/sec, and n=>5, the equality Ao(T)=né is
satisfied at T=7,=0.23T,,. Since D, is proportional
to D,, which depends exponentially on temperature®
li.e., Dy =Doexp(—Q/KpT), where Q=(5+20T/3T)
xKpTml, T. is relatively insensitive to variations around
58. Since the zone-I film microstructure is of the form
produced by ballistic aggregation (i.e., the zero-diffusion
limit), we equate T, with ;. The calculated value of T
is in good agreement with the experimental value.

The nonlinear terms in (1) saturate the long-wave-
length instability into a relatively small-amplitude ce-
lumnar surface profile. The free-energy formalism®
shows that the steady-state solutions of the full non-
linear, partial differential growth equation (1) are de-
scribed by

H*—(1+H}2 2=, )

where C, —1<C <o, is an integration constant; H
=(8J/2D,)*(h —Jt); and z=(8J/2D.)"*x. Solving

(2) for —1<C<0 yields the roughly sinusoidal
steady-state surface profiles

H=1+C)"cosalz), 3)
where
2E(a,r) —F(a,r) =z/2+const, r=[(1+C)/2]1'2,

and E and F are incomplete elliptic integrals. When
C >0, the solution of (2) is still given by (3) until sin’a
reaches 1/(1+ C); the solution then jumps from H=+C
to H=—C (or from H=—C to H=+C) and then (3)
again pertains. Thus the steady-state profiles with C >0
consist of very nearly circular arcs connected by vertical
lines. Both the characteristic wavelength of these pro-
files and their amplitude decrease monotonically as C in-
creases. The value of C is determined by the maximally
unstable mode (assuming small-amplitude initial condi-
tion). These steady states have been shown numerically
to be stable with respect to small perturbations.’

In order to demenstrate that the solutions (3) with
C > 0 are stable steady states which can be reached from
typical initial conditions, we have integrated (1) numeri-
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FIG. 2. Evolution of an initially (a) sinusoidal profile and
(b) random profile, towards a stable steady state.

425



VOLUME 60, NUMBER 5

PHYSICAL REVIEW LETTERS

1 FEBRUARY 1988

cally for both sinusoidal and random initial conditions
[see Figs. 2(a) and 2(b)]. The profile evolves to steady
solutions [given by (3) with C> 0] in between vertical
slopes. Once the profile develops vertical slopes there is
little additional evolution of the profile, and hence the
profile can be irregular with no well-defined wavelength
[see Fig. 2(b)]. For small initial perturbations of a flat
substrate, however, the fastest growing wavelength A,
tends to dominate the surface’s evolution and set the
wavelength of the final profile. Since A,, is of the order
of the wavelength of light (i.e., A, =10 "% cm to 10 ~°
cm for T==0.3T,, to 0.5T,,), this roughness may be the
cause of the matted surface finish typically observed in
zone II.

The surface profile of a real film is modified by the
presence of grain boundaries intersecting the growing
surface and creating grooves with an opening angle
cos(®/2) =0%b/205, where oy, is the grain-boundary en-
ergy density.'® Numerically we find the surface profile
between grain boundaries to evolve (rapidly) to a steady
solution of (1). Specifically for grain sizes d <A, the
unique steady state consists of a smooth nearly circular
cap connecting the grain boundaries [see Fig. 3(a)l.
However, for d much above A,,, diffusion is unable to
smooth the surface over length scales of order d; conse-
quently there are many steady states and a rough surface
morphology occurs [see Fig. 3(b)].

Once steady states are attained between grain bound-
aries, the film can reduce its total energy only by coars-
ening the grain size. This coarsening process can only
occur by translation of the grooves, and there are two
mechanisms underlying it. The first is surface-curvature
driven. For grain sizes d <A,,, the net velocity across

(a)

JU

(b)

FIG. 3. (a) Smooth, nearly circular steady state between
grain boundaries for d <An,. (b) Rough surface morphology
attained for d > Apm.
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the groove and along the x axis is
v¥e — (k' —x7)/Ax, 4

where x* (x7) is the surface curvature at point x*
(x 7) located at an infinitesimal distance Ax to the right
(left) of the groove x,(¢). The velocity of the groove can
be written as v, = —v* or as vgod,”, where d*(d 7)
are the grain sizes to the right (left) of the groove, and
the subscript ¢ implies differentiation with respect to
time. The radius R* (R ™) of the circular surface cap
of the grain d* (d 7) is given by d T =2R ¥ cos(®/2).
R* (R7) is also inversely proportional to k¥ (x 7).
Combining this information we find the mean grain size
at the surface (d) to increase with time like

(d)=at'3, a=const, (5)

as long as (d)=<A\,. However, for grain sizes much
above A,, this mechanism leads to little further coarsen-
ing since the surface profile simply moves into steady
states which have equal curvature on both sides of the
grain boundary.

Second, regardless of the surface curvature, the grain
boundaries also move in response to grain-boundary cur-
vature in the plane of the film. For this type of growth
the mean grain size (d) at the surface grows asymptoti-
cally as'!

(dY=pt"%, B=const. (6)

Essentially all theories of growth driven by domain-wall
curvature in nonconserved systems yield t'? domain-
growth kinetics. We expect that this ¢ /2 growth law will
dominate the ¢ law for all physically meaningful
times.

Finally, we performed two-dimensional Monte Carlo
simulations>'? of realistic three-dimensional zone-II mi-
crostructures. Specifically, we performed Monte Carlo
simulations of the evolution of the surface microstructure
on a triangular lattice with nonconserved order parame-
ter (Glauber dynamics) at T=0 following a quench
from 7> T, (the technique used is exactly that of Ref.
12). The Hamiltonian describing the system is that of a
48-fold degenerate Potts model which has been shown to
reproduce experimental grain-growth microstructure
accurately.!*> The correspondence between the two-
dimensional simulation and film relies on the fact that
for T <0.5T7,, bulk diffusion is negligible relative to sur-
face diffusion; thus the interior of the film is kinetically
frozen and all microstructural development occurs at the
free surface. Therefore, through-thickness cross section
of the film may be represented by traces of the positions
of grain boundaries in one of the two spatial dimensions
plus the time dimension of the model. The simulations
account for both growth competition between adjacent
grains and the development of film texture due to surface
energy anisotropy (i.e., a field that couples to certain
orientations). Figure 4 shows a typical through-
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FIG. 4. Through-thickness cross section of a film from a Monte Carlo simulation. Initially, the fraction F of surface area covered
by grains in the lowest-energy orientation was 0.10. Also shown are the mean grain area {(4) and F as functions of film thickness

(i.e., the vertical axis).

thickness cross section of a film in which initially 10% of
the surface consisted of grains in the lowest surface ener-
gy orientation. This figure also shows the mean grain
area {4) (in the plane of the film) and the fraction F of
surface area in the lowest energy orientation as a func-
tion of film thickness (i.e., the vertical axis). As a result
of the rapid growth of the low surface energy grains at
the expense of the high energy ones, initially the micro-
structure exhibits a bimodal grain size distribution with
(A) increasing quadratically and {d) increasing linearly
with time. Once the surface is composed entirely of
grains in the lowest energy orientation (F=1), further
coarsening is controlled solely by the curvature of the
grain boundaries. Consequently, the mean grain area
(A) increases linearly in time, reflecting the growth law
described in (6).

In conclusion, a theoretical model for the growth of
zone-II microstructures has been presented. This model
shows that the columnar growth is primarily controlled
by competition between discrete atomic deposition and
surface diffusion. The zone-I to zone-II transition tem-
perature, the characteristic length scales associated with
the unstable modes, the analytic steady-state surface
morphology, the columnar grain structure, and the
dependence of grain size on film thickness are all ac-
counted for, in good agreement with experimental zone-

II microstructures. Numerical simulations have substan-
tiated this model and provided additional information
about the development of columnar grains and film tex-
ture.
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FIG. 1. The deposition geometry (x is the surface curva-
ture).



