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Self-Pulsing in Intrinsic Optical Bistability with Two-Level Molecules
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Well-developed sine-wave self-pulsing has been observed in the beam transmitted by a passive cavity
containing a molecular gas, subjected to a cw incident beam. The free spectral range of the cavity is

comparable to the Rabi frequency inside the cavity and much larger than the relaxation rate. The self-

pulsing is attributed to the multimode instability predicted by Bonifacio and Lugiato in 1978 but not yet
observed.

PACS numbers: 42.65.—k, 33.80.—b, 42.50.—p

Optical bistability ' is a remarkable example of
cooperative behavior in an open system far from thermal
equilibrium. From this viewpoint, the search for insta-
bilities in optical bistable devices is a crucial point. Bi-
stability itself originates in the fact that the intermediate
branch of the S-shaped bistability curve is unstable, but
it was early recognized that the positive-slope regions of
this curve may also be unstable for suitable values of the
control parameters, leading to a much richer phenome-
nology, including regenerative oscillations, ' self-pulsing,
and chaos.

Among the diA'erent types of optical bistable devices,
the cavity filled with two-level atoms (or molecules) and
driven by a cw incident beam appears to be of special im-

portance. It is a canonical model in nonlinear optics
and, if necessary, is liable to a fully quantum treatment.
Following the pioneering works by Bonifacio and Lugia-
to and by Ikeda, numerous types of instabilities have
been predicted to occur in this system but only one of
them has been actually observed. This has been achieved
in an experiment in which two-level atoms couple to a
single mode of the cavity (single-mode instability). The
instability originates then in a subtle interplay of non-
linear gain and dispersion in the medium in order that
multiple frequencies can coexist in the cavity with
eA'ectively only a single mode. In contrast, multimode
instability, which has been the first to be predicted and
which may be more simply understood in terms of side-
mode gain, ' has not yet been observed with
continuous-wave excitation. ' We succeed in observing
instability in such conditions, achieving an experiment in

which the free spectral range of the cavity is comparable
to the Rabi frequency (power broadening) inside the
cavity and much larger than the inverse of the medium
response time. The instabilities observed in this case are
then expected to be closely related to the self-pulsing ini-
tially predicted by Bonifacio and Lugiato and studied
extensively in subsequent papers. "' As noted by
Gibbs, ' this self-pulsing seems to be the signature of
Rabi fIopping, resulting in side-mode gain.

Our bistable system' is a Fabry-Perot cavity of length

I=182 m (free spectral range c/21=830 kHz) filled

with HC' N at low pressure (0.5-1.5 mTorr). The cavi-

ty is cw driven by a source phase locked at a frequency
v, close to the frequency v of the J=0-1 rotational line

of HC' N (v =86.05496 6Hz, wavelength X =3.5
mm). Between the input and output mirrors of
refiectivity Rp =0.95 and transmittivity Tp=0.05 (negli-

gible losses), the beam is guided (except for short sec-
tions) by a very oversized helix waveguide (helix radius
a =30 mm). This waveguide acts as a mode filter and
transmits only the modes TEp„of electric field

E, =E, =0 and Ee=EpJ~(rj i„/a), where Ji is the first-
order Bessell function and j1„its nth zero. The input
and the output couplings are made in the single-mode

TEpi, presenting the lowest losses. The power transmis-
sion in this mode is Ap =0.73 per 182-m trip. It is easily
shown that our cavity is equivalent to a cavity without
distributed losses provided that Ro and To are replaced

by T, = TpJA p =0.043 and R, =RpAp =0.69. This
leads to a mode width of 48 kHz (HWHM) and to a
finesse F =8.5.

The 0-1 rotational line of HC' N is easily saturated at
moderate power level on account of the large permanent
dipole of HC' N (p=—3 D) and, if we neglect its narrow
magnetic hyperfine structure (16 kHz), is characterized

by a unique Rabi frequency' vrt=pp~E/h=pE/hv3,
that is, about 750 kHz for the mean power density of 1

mW/cm typically achieved inside the cavity in our ex-
periments. This value being significantly larger than the
inhomogeneous Doppler broadening (=—100 kHz), the
HC' N gas approximates closely an ideal medium of
homogeneously broadened two-level systems. The relax-
ation is mainly collisional and, as usual for rotational re-
laxation, is characterized by a unique rate Z (Z&=pi),
proportional to the gas pressure (y/2+=23 kHz at 1

mTorr). Finally, the large power absorption of the line
in the linear regime (a =0.8 m in the collisional lim-
it' ) leads to a cooperativity parameter C=a 1F/2x
=-200, that is much beyond the threshold of bistability.

Figure 1 gives an example of bistability cycle, evidenc-

ing a well-developed self-pulsing on its upper branch. It
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