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Are There Any Superstrings in Eleven Dimensions?
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Covariant actions are proposed for classical superstrings immersed in eleven space-time dimensions, by
construction of simple Chem-Simons terms. Local world-sheet variables are used which are space-time
vectors, Majorana spinors, and antisymmetric tensors.

PACS numbers: 11.17.+y, 11.10,Kk

Strings may be viewed geometrically as immersions
of a two-dimensional world sheet At2(z) into a D-
dimensional ambient space-time manifold An(x). Su-
perstrings' require an additional spinor structure 8 on

Atn, and seem to be the most interesting and consistent
models.

Alternatively, strings may be regarded simply as two-
dimensional field theories where the local fields p(z)
transform as specific representations under the sym-
metries of the ambient space-time manifold. Previous
string theories have used p's which were either space-
time scalars, spinors, or vectors, the latter variables be-
ing the obvious choice from the geometrical point of
view. However, from the field-theory viewpoint, there is
no obvious reason to avoid p's which are more complicat-
ed space-time tensors or spin-tensors. The only immedi-
ately apparent problems are the usual ones: Find enough
symmetries to eliminate all ghosts in the Minkowski-
space formulation of any such models, and/or demon-
strate the absence of conformal anomalies in the Eu-
clidean space formulation.

In this rather speculative Letter, I propose some new

string models, especially for D =11, which use antisym-
metric space-time tensors, e.g. , y", in addition to space-
time spinors and vectors, 8 and y". These tensors are in-
terpreted as "stringy" generalizations of the well-known
local gauge fields. These models were found within a
classification of all immersions, Aid(z) CA,D(x), d ~ D,
which admit local supersymmetries. Such "superim-
mersions" are defined by actions which are invariant un-
der transformations whose parameters tc(z) are space-
time spinors with nontrivial dependence on the submani-
fold coordinates.

The original example of a superimmersion is the super-
particle. Besides superstrings, the next example to be
found was that of a three-dimensional object immersed
into six space-time dimensions, At4(z) C&6(x), where
the world volume swept out by the object is four dimen-
sional. More recently, several other superimmersions
have appeared in the literature, including a beautiful
example with A(3(z) CAt~t(x), where the space-time is
allowed to be curved.

The problem of classifying such models constructed
only from 8 and x variables has apparently now been

solved. Classically at least, there exist four fundamen-
tal superimmersions: At3(z) C JK4(x) JK4(z) C JK6(x),
A6(z) CAt&0(x) and At3(z) CAt&~(x). An elementary
discussion of the geometrical and dynamical properties
of these fundamental cases may be found in Ref. 3. A
number of other examples may be obtained by dimen-
sional reduction, including the well-known superstrings.

On the basis of prior experience with these known su-

perimmersions, invariance under local x transformations
would seem to be a good consistency test for a model
which can be checked at the classical level, prior to
quantization. In this Letter, only such classical con-
siderations are made, although it is obvious that the crit-
ical dimension determined from quantum consistency
checks must be reevaluated, and will, in general, change
as a result of the presence of the additional antisym-
metric tensor variables.

The set of variables to be used for a string immersed
in eleven dimensions is suggested by supergravity which
involves the elfbein, the gravitino, and an independent
torsion, (eg, tltM, Agf), where p and v refer to the space-
time manifold while M refers to the tangent space. By
analogy, I introduce string variables (y",8,y""), with 8
of Majorana type, and define differential forms which
are invariant under the constant spinor transformations
B8 e, By" t'er "8, By"" eT""8. With I ""—:(I "I "
-I'T")/2, these differentials are

tt" —=dy" —i8I "d8, tt""=dy"" 8I ""d8—. —

Historically, it would be more conventional to consider
the supergravity variables (e„,tlt„,Af ~), which are obvi-
ously related to the previous set. In this form, a connec-
tion to the proposed string variables is obtained by con-
traction with a space-time vector, V", since a priori,
there is no reason to identify y" with the space-time
coordinates x". Natural choices for V" would involve
derivatives of x". For example, one could take the ex-
trinsic curvature g' R,"b, where R,"b is the globally su-
persymmetric generalization of the second fundamental
form' for the submanifold A2. Intuitively, this just
amounts to an infinitesimal thickening of the world
sheet. A finite extension of this choice for V" would in-
volve a line integral fdx" along a curve orthogonal to
the surface, which certainly suggests a connection to the
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supermembrane theory mentioned above [a more techni-
cal connection is established below; cf. Eq. (6) and the
accompanying remarks]. Alternatively, the string theory
proposed here may be related to the limit of infinitesi-
mally narrow membranes. Since membranes are notori-
ously more difficult to quantize, however, it would seem
to be preferable to try to deal with this narrow limit
directly.

Therefore, let us define a one-parameter induced
metric on the world sheet for the case of a flat ambient
space-time,

g,g
=x»zt'+ cx,» "xg" (2)

Bv —g = —2i v' gg' x(—z»I " ice»—'r»') 8b8 (4)

Now, the set of x's for which this vanishes seems to be
uninteresting since (I »z» —icI » "z»")x 0 is a very
strong constraint, just as I "z,"x=0 implies x=0 for
nonlightlike x"'s.

where z»=x»dz', z»"=z»"d—z'. I will fix the param-
eter c below (= —1/10). The obvious extension of the
Nambu area-law action would now be Jd z 4 —g,
g=det(g, b). However, as in the superstring and super-
membrane cases, this action does not behave well under
the local x transformations. I define these to be

be=x(z), by" = ixI —"8, By""=—xI ""8,
(3)

B~»= 2ixr"—de, B~»"= 2xr—»"de

From (2) we then have

As in the usual superstring and supermembrane cases,
to find a more interesting local structure on the world
sheet, I search for closed, exact three-forms" to add
Chem-Simons terms to the action. A combination of
forms which suffices is immediately found to be

f=i~» der» de ,
—', ~—»"der»" de (s)

This identity is in turn an immediate consequence of the
identity needed to construct a locally supersymmetric
membrane theory in eleven dimensions:

r»"de(der» de) +r» de(der»" de) =0

The relation in (6) follows by contraction of the latter
with I „, using I „I""=—10I". [However, note that in
general, a relation like (6) is possible even when the
membrane condition fails, e.g., when D =15.]

Under the local transformations in (3), using (6), we
have

bf = —2i d[z»x I »de+, () iz»"xI ""de]

Integration over a three-dimensional slab, At2 [0,1], in
the usual way then gives

bf =„d z[ —2ie' x(z,"I "+—', ix»'r"")8be]. (8)g At2

On comparison with (4), the obvious choice for the con-
stant is c = —

&', . This choice gives

This is closed and exact (the terms quartic in 8 actually
cancel) as a consequence of the eleven-dimensional Fierz
identity for Majorana spinors,

1or» de(der" de) +r»"de(der»" de) =0

f
B„~d z+ —g+B„~ lo, lf = 4ig d'z4——gP'+x(n»I "+ ,', i~»"r»")g, e—, (9)

where P'4 —= —,
' (g' ~ e' /4 —g ) are the usual projection

operators. Although the projection operator in (9) is
perhaps a bit ad hoc at this time, its presence seems most
natural upon consideration of previous superimmersions.
The point to emphasize here is only that we may fix the
relative amounts of x" and z"" which appear in the
world-sheet metric through a simple classical principle.
Quantum considerations may override the choice c
= —

—,', later, but for now it seems to be optimum.
Thus I have obtained my result: With the induced

metric,

(lo)

the action,

I= d z4' —g —ic' 8[rr, I»+»(i/10)x,»'r»"]rlbe],

is locally invariant under (3) for all x satisfying

This is the least restrictive condition which I can find for
the parameter x, and appears to yield a nontrivial set
(Ref. 3) of x's through the presence of the projection
P'". An equivalen— t invariant action is obtained through
&ab &ab pah pab

I note in passing that it may be possible to gain some
insight into the above by using a coset-space approach,
with group elements U =exp [ieQ+ iy "Q„+iy""Q„„],
where Q, Q„, and Q„„are space-time spinor, vector, and
tensor charges, respectively. Perhaps the underlying
algebra is a contraction of a subalgebra of the usual
orthosymplectic (conformal?) superalgebra, but I will
not pursue this here.

I also note some slight generalizations of the above
construction. First, it is possible to use two independent
Majorana O's to build an exact three-form, similar to the
three-form used for type-II superstring theories in ten
space-time dimensions. We replace the forms in (1) by

P"(~)+ ,', aI", r")x =—O (12) x"=dy" —tO, I "dO~ —tOpI "dO2
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and fact, since

der p"de- de, r p" de, de—, r&"de,

It may also be possible to find a suitable set of space-
time scalars to be used with the set (y", H,y"") above, to
construct a heterotic closed-string theory in eleven di-
mensions.

Secondly, I note that there is another possible closed
and exact three-form involving a single Majorana O in

eleven dimensions. That exact three-form is
4

F=ix"deI "de+ x"'" deI """de,
720

(13)

where

PvkP(7 —dqqPYILPIJ 'erP SPIT de

and it makes contact with a "failed" supergravity'
whose local field variables are (eg, y~, AP" P ). The ex-
actness of F follows from the Fierz identity

720I "de(deI "de)+I "" de(deI "' de) =0.

(14)

By alteration of the other relations above in an obvious
way, e.g. , making the induced metric bilinear in z, and
zP""P, a locally invariant action can be obtained for the
variables (y",H, y"" P ).

In general, by taking an arbitrary mixture of f and F,
specifically rtf+(I —g)F, with a corresponding mixture
of bilinears in the definition of g,b, we obtain a theory in-
variant under those local a. transformations whose pa-
rameters satisfy the constraint

p' zt,'I "+ zg "I ""+ z"" r"" x =0l i(1 — )
10 720

(15)

It remains to determine which values of the parameter g
are optimum, from either classical or quantum con-
siderations.

Furthermore, by taking the linear combination 72f—F, it is possible to construct an invariant action which
involves only the variables (y"",H,y"" p ), and does not
involve y" (a "pointless" superimmersion). It is also
amusing to contemplate 8-doubled and/or heterotic mix-
tures involving f and F.

Finally, we observe that f is also exact for D =4. In

~""=dy" ' e—r""d8)
—82I "'d82,

and then modify the three-form in (5) by using these
new z's as well as by letting

dOI "dO dpi I dO& dO2I "dO2

and

rpde(der pde) =0=rp"de(der"'de)

for a Majorana O in four dimensions, there is a one-
parameter family of theories involving (y",H, y"') which
is locally K invariant in four-dimensional space-time [i.e.,

the parameter c in (2) is undetermined for D =4].
Perhaps some of the models described above will turn

out to be consistent upon quantization. In eleven dimen-
sions, the most likely candidate for a consistent theory is
that involving (y", H, y""), since it requires elimination of
the fewest ghosts. Some extension of the Virasora alge-
bra, incorporating the x symmetry discussed above, may
help to show this (for other developments along similar
lines, see Zamolodchikov' and Bais et al. ' ). Work on
the quantization is in progress and is really beyond the
scope of the present paper.

We can make some simple observations about quanti-
zation, however, based on the sum-over-histories ap-
proach of Polyakov. If we truncate down to only bosonic
variables, since the action is quadratic in them, we may
easily work out the world-sheet conformal-anomaly con-
tributions of the antisymmetric tensors in Euclidean
space. In this way, on the assumption that the only local
invariance is the usual one associated with world-sheet
reparameterizations, it is easily established that a theory
involving y" and y"' is anomaly free for D =6. It is also
clear that models involving y"" for D =3 are equivalent
to y" models, since in three Euclidean dimensions planes
are dual to their normals. It is amusing to note in this
latter case that statistical mechanical systems involving
local planar structures do arise in nature (e.g. , benezene
or a-pyridyl molecules distributed on a two-dimensional
substrate). However, for the models described above, it
remains to establish the effects of the O degrees of free-
dom on the conformal properties.

It is also stimulating to consider the possibility of us-

ing an open-string theory which contains supergravity in

eleven dimensions, instead of the more conventional
closed-string approach, by choosing a ground state to be
a space-time vector, building higher states with Fourier
modes of (y",H,y"") so that the supergravity variables,
(egt, yM, Agt"), appear at the first excited state, and then
projectively halving the spectrum so that the supergravi-
ty multiplet is lowest in mass squared. Alternatively, the
additional space-time vector indices might be attributed
to the vector V" described above. These issues will have
to be discussed further elsewhere.

Whether or not the models described in this paper
turn out to be consistent, I believe they represent a useful
way of parametrizing the problems associated with su-

persymmetric string theories in more space-time dimen-
sions. By introducing additional variables, this parame-
trization has been accomplished at the classical level.
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