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We provide evidence for a new unitary series of conformal field theories, labeled by integers M and N.
For N 1,2 they reproduce the unitary conformal and superconformal series of minimal models. For
higher N, they correspond to models with c & 1, generated by new nonlocal currents of spin

(N+4)/(N+2). We use a generalization of the Feigin-Fuchs construction to find the currents and the

primary fields of the new algebras.

PACS numbers 11.10.—z, 02.20.+b, 05.50.+q, 11.17.+y

The complete classification of all two-dimensional con-
formal field theories is a major goal in the study of criti-
cal phenomena. This is because the representations of
conformal algebras play a central role in describing the
critical behavior of two-dimensional statistical sys-
tems. ' Conformal field theories are also important for
string theory. 3 In string theory, each modular-invar-
iant conformal field theory describes a possible string
compactification. One hopes that the study of conformal
field theories will lead to a deeper understanding of the
nonperturbative aspects of strings.

In two dimensions, the conformal group is infinite di-
mensional. The algebra consists of two copies of the
Virasoro algebra, labeled by their central charge c.
Many conformal field theories are known to exist. For
example, there is an infinite set of exactly solvable uni-

tary theories with central charge

c =1 —6/(M+2)(M+3),

for M ~ 1. This set of minimal models has been exten-
sively analyzed, and their mathematical structure is well
understood. The first models in this series corre-
spond to the Ising model (M=1), the tricritical Ising
model (M 2), and the three-state Potts model (M 3).

In this Letter, we provide evidence for new unitary
series of conformal field theories. Our models are la-
beled by integers M and N. For N 1, they reproduce
the unitary minimal series (1). For N =2, they describe
the unitary superconformal tnodels with c & —', . For
higher N, we conjecture that our theories form unitary
representations of extended Virasora algebras generated
by new nonlocal currents of spin (N+4)/(N+2). In
what follows we use a generalization of the Feigin-Fuchs
construction to find the currents and the pritnary fields
of the new algebras. The new currents are generaliza-
tions of the usual superconformal current to the case
W& 2.

The Virasora algebras associated with our models are
obtained from the Goddard-Kent-Olive (GKO) construc-
tion for cosets of affine Kac-Moody symmetries. The

GKO construction is based on the fact that every Kac-
Moody algebra g gives rise to an associated Virasoro
algebra with generators Lg and central charge c . Given
an algebra g and a subalgebra h, GKO showed that the
operators K„=L„—L„" generate a new Virasoro algebra
with central charge c =ctt —c". Their construction holds
for any algebra g and subalgebra h.

In this Letter we consider the case where g =su(2)
Ssu(2), and h is the diagonal su(2) subalgebra. We
take a level of M representation for the first factor, a lev-
el N representation for the second, and a level M+N
representation for the diagonal subalgebra, and use the
GKO construction to build a Virasoro algebra with cen-
tral charge

3MN (M+ N+ 4)
(M+N+ 2) (M+ 2) (N+ 2)

(2)

Here we rely on the fact that ctt =3k/(k+ 2) for an
su(2) representation of level k. Note that (2) is mani-
festly symmetric under the interchange M N. For
N 1, it reduces to the unitary minimal series of Eq. (1).
For M, N & 1, it describes a new series of conformal field
theories with c & 1.

The unitary minimal models (corresponding to N= 1)
can be represented in terms of a single free scalar p, with
stress-energy tensor T„=——,

' 8,&8,&+t'ao8, & The.
central charge for this system is c 1 —24ao. The ap-
dependent term in the stress tensor is needed to give a
central charge that is less than 1. Physically, it corre-
sponds to a background charge —2ao located at infinity
on the z plane. With a background charge 2ao
= IHM+2)(M+3)] 'I, this construction reproduces
the central charges of the unitary minimal models.

The primary fields of the minimal models are repre-
sented by vertex operators V, =e' ~. These vertex opera-
tors have conformal dimension h,,=a —2aao, and so V,
and V2,,—,have the same dimension and represent the
same physical state. In this representation, the vertex
operators of dimension 1 play a special role. They are
known as Feigin-Fuchs screening operators and have
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the form V, =exp(ia ~ p), where

M+3
[(M+2)(M+3)]' ' '

M+2
[(M+2) (M+ 3)] '

(3)

The screening operators are necessary for the correlator
(V, V, V,V2„,) to be nonvanishing. Since the screening
charges have conformal dimension 0, they do not change
the conformal properties of the correlator.

The requirement that vertex operators have nonzero
four-point functions restricts the allowed values of a.
The physical vertex operators are of the form Vpq

=exp(ia~qp), where azq
=

& (1 —p)a++ ~z (1 —q)a-.
The Vpq have dimension

[p (M+ 3) —
q (M+ 2) ] —1

4(M+ 2) (M+ 3)
(4)

they are the primary fields of the Virasoro algebra for
the unitary minimal models.

For general N, the central charge (2) can be written
as

6N ~ 2(N —1)
(M+2)(M+N+2) N+2 (5)

The first two terms in the above expression are the cen-
tral charge for a bosonic field with a given background
charge. The third term is the central charge for a ZN
parafermionic theory. (Of course, the above expression
could also have been written in terms of Z~ parafer-
mions and a different background charge. This duality
will play an important role later in this Letter. )

The ZN parafermionic theories are generated by non-
local currents of fractional spin. They can be described
in terms of a free scalar field X(z) and an su(2) level-N
Kac-Moody algebra. The parafermionic fields @' have
dimensions

5' =l(l+2)/4(N+2) —m /4N,

where l —m =0 (mod 2).
The fields @~—2k, for k=1, . . . , N —1, are the para-

fermionic currents iA. The dimensions of these fields
are d,k =k(N —k)/N. The dimensions of the para-

[p(M+N+2) —q(M+2)] Nk(N —k)—
4N(M+2)(M+N+2) 2N(N+2) '

for k =
I p —

q (mod N) I . The values of p and q are re-
stricted to the range 1 ~ p ~ M+ 1 and 1 ~ q ~ M
+N+1. Later we shall see that the dimensions (9) can
also be obtained through the characters of the su(2)
algebra.

For N=2, this construction reproduces the unitary
series of c & —,

' superconformal models. The primary
fields 0 pq give rise to unitary irreducible representations

fermions satisfy the condition AN k =4k, and so yj
=@~—k. The fields @k, k=1, . . . , N —1, are the pri-
mary fields of the parafermionic current algebra. In sta-
tistical mechanics, they correspond to spin fields ok, of
dimension Af, k(N —k)/2N(N+2). The parafermion-
ic algebra also includes a set of Hermitean fields
e~ =rrsoj, forj =1, . . . , [N/2]. The fields e~ have dimen-
sion Aj =j(j+1)/(N+2). In statistical mechanics, they
represent energy operators.

The states created by the fields t.~ can be represented
in terms of the creation operators of the parafermionic
current nfl acting on the highest-weight states I ok),

J
II~(i 2I)/N I

—&N —2J).
I-& (6)

There are other Hermitean fields whose dimensions
differ by integers from the fields ei. These fields are con-
structed by replacing AkiN in (6) by AkiN —„, for
n C Z~. Later we will use the field il, associated with
the state

M+2
[N(M+2)(M+N+2)] '

The operators V„and V, have dimension 1 since the
parafermions have dimension (N —1)/N.

All of the fields in our new theories can be constructed
from a bosonic vertex operator and a field in the parafer-
mionic theory. There is a very special set of fields, how-
ever, that we believe to be the primary fields of a new
current algebra. These fields have the form 4'zq
=ok exp(ia~qp), where k =

I p —
q (mod N) I and a~q is

as above. The primary fields +pq have dimension

of the superconformal algebra that typically are reduc-
ible with respect to the Virasoro algebra. For example,
the case N =2, M =1 describes the tricritical Ising mod-
el. ' This model contains a superconformal primary field
0 ]3 of dimension ]0 . The representation space of this
field splits into two irreducible representations of the or-

1 1 3dinary Virasoro algebra, ( io )sconf ( lo )vir( s )vir.

I ~i) —& —i&N —l I ~N 2). —

The field il has conformal dimension (N+4)/(N+2).
We will now generalize the Feigin-Fuchs construction

to our extended theories with N~ 2. We build the
screening operators from the ZN parafermions yl and yl
and from bosonic vertex operators exp(ia ~ ql). The
screening operators are v„=

imari exp(ia+p) and v,= ilfit exp(ia p), where

M+N+2
[N(M+2)(M+N+2)) 'i
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(io)

For N=2 and any value of M, the superconformal algebra is generated by the current J, =8,&]//
—4ia08, ]i/ of di-

mension & . The null states of the superconformal algebra are constructed with the help of the screening operators. "
The current J, and the screening operators V have operator products of the form

V..(w) 8„V..(w)J (z)V..(w)= — —,+ — +a~, (z —w)' z —w

This ensures that the current commutes with the screen-
ing operators, as required for the null-state construction.

For larger values of N, the dimension of the current is
determined by our setting M=1. This gives a "dual"
description of the c & 1 unitary models in terms of ZN
parafermions. The new current J, always has dimension

h3] =(N+4)/(N+ 2). For N =2, the current has di-
mension 2, while for N =3, the dimension of the current
is 5 . The case N =4, with a nonlocal current of dimen-
sion —', , has been investigated by Fateev and Zamolod-
chikov. ' Below we shall see how the current acts in the
minimal model N=3, M=1.

For N )2 there are two conformal fields of dimension
h». They are J,'=8, &e] —i(N+2)aors, e] and J,
Here e] and i] are Hermitean fields defined in (6) and
(7). Their operator products with the parafermion y]
can be determined from the operator products of the
su(2) algebra,

f](z)lg](W) =0'2(W)/(Z W)+ '

E](z)lP](W) =0'2(W)/(Z W) + '

The current J, must be a linear combination of the
conformal fields J,' and J, . The relative coefficient is
fixed by requiring the operator product of J, and V, to
have a form similar to (10). It is not hard to show that
this determines the current to be

J, 8, ((]e] —i(N+2)a08, e]+ 2 i(N —2)(a+ —a-)F].

(i2)
For N=2, Eq. (12) reduces to the usual supercurrent
because the energy operator e] becomes degenerate with
the parafermion y.

[Ã/2] M+N+1
+M, (p —])/2 2 /iN, m 2 /iM+N, (q —])/2~pqi

0 q 1

For N=3 and M=1 the above construction gives an
alternative description of the c= 5 minimal model, in

terms of Z3 parafermions and a scalar with a back-
ground charge. The primary fields of the extended alge-
bra have dimension 0, —,', —,', , —,', , and —,

' . All the other
fields in the minimal model can be obtained from these
fields by applying the current J,. The primary fields
split into charge sectors according to the charge of the
spin field crk Th.e neutral sector includes the states

~
0)

and
~

—,
' ). The current acting on these states gives rise to

~

—', ) and
~

—,", ), respectively. This follows from the
operator product expansions of e] and Z] with the identi-

ty. The current in this sector is moded by J—2/3+„.
Similarly, the charge + 1 sector contains the states

~ 40 ), ~
—,', ), and

~

—', ). The current acting on these
states gives

~

—", ), ~
—,
' ), and

~
3). This follows from the

operator product expansions of e] and F] with the spin
operators o] and o2. In this sector, the current is moded

by J—3/5+„. Details of this construction, and the gen-
eralization to other models, will be presented else-
where. '

Further evidence that the fields %'pq are the primary
fields of a new current algebra is provided by the su(2)
characters. We will use these characters to decompose
representations of g =su(2) Ssu(2) with respect to
hSV, where h =su(2) and V denotes the symmetry
algebra of our new models. The su(2) characters
ZN ](z,8) are labeled by the level N and spin i of the rep-
resentation; they are defined in Ref. 5.

For the cases N =1 and 2, the algebras V are just the
Virasoro and super-Virasoro algebras. Their characters
can be found from the su(2) branching functions, as
shown in Ref. 5. Here we generalize this construction to
higher N, and define Xpq as

for p —
q even. For p —

q odd, the Xzq are obtained from the product

((N —1)/2] M+N+1
/iM, (p —] )/2 X /IN, m + ]/2 Z /iM +N, (q —] )/2~pq.

m 0 q 1

The even and odd sectors are generalizations of the Ramond and Neveu-Schwarz sectors for the case N =2.
The Xpq can be found from (13) and (14) and with the help of the string functions' c' (z):

N N

z„(.) = g g ..'(.) g ~...'-'"'- g s.."-'"' .
I 01m 0 nEZ nGZ

Here I runs over even (odd) integers for p —
q even (odd); (s,r) =

~
(p+ q)+2(M+2)n (mod N) ~; and

[2(N+M+2)(M+2)n+ (N+M+2)p —(M+2)q] N-
4N(N+M+2) (M+2)

(i4)

(is)

(i6)
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(n 2 —1)MN(M+N+2n)
(M+N+n)(M+n)(N+n) (17)

These models can be represented in terms of generalized
parafermions ' and n —1 scalar fields. The Feigin-Fuchs
screening operators can be constructed from the parafer-
mionic fields and appropriate vertex operators. The ver-
tex operators have the form V, e' ~, where the a are
proportional to the roots of the su(n) algebra. The pri-
mary fields of this algebra are labeled by two (n —1)-
dimensional vectors p and q. The situation for general g
and h has been recently discussed by Douglas. '

We would like to express our thanks to the SLAC
theory group and the Aspen Center for Physics for hospi-
tality while this work was performed. We would also
like to thank Alexander Zamolodchikov and Michael
Douglas for helpful conversations. After this work was

The Xzq play the role of characters for the new symmetry
algebras V. They are in one-to-one correspondence with
the primary fields +pq introduced above. The proof that
the X~q are indeed the characters of a new algebra V re-
quires that we identify all the currents of V and check
that the corresponding Verma modules agree with the
characters level by level.

An important open problem is to clarify the connec-
tion between the Feigin-Fuchs and GKO realizations of
these models. For example, the question of unitarity is
best approached from the GKO point of view. For N =1
and 2, the models discussed here are unitary, as was
shown in Ref. 5. We believe that our models are unitary
for higher N as well. A full proof of unitarity would re-
quire the construction of the complete set of currents in
terms of su(2) representations. Work along these lines is
in progress.

The above construction of extended models with c & 1

can be applied to other affine Lie algebras. For example,
the GKO construction with g=su(n)&su(n) and h
=su(n) gives rise to a series of models with central
charge

completed, we received a preprint by Kastor, Martinec,
and Qiu which discusses some of points presented here. '
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