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Measurement Breaking the Standard Quantum Limit for Free-Mass Position
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An explicit interaction-Hamiltonian realization of a measurement of the free-mass position with the
following properties is given: (1) The probability distribution of the readouts is exactly the same as the
free-mass position distribution just before the measurement. (2) The measurement leaves the free mass
in a contractive state just after the measurement. It is shown that this measurement breaks the standard
quantum limit for the free-mass position in the sense sharpened by the recent controversy.

PACS numbers: 03.65.Bz, 04.80.+z

For monitoring the position of a free mass such as the
gravitational-wave interferometer, it is usually sup-

posed ' that the predictability of the results is limited by
the so-called standard quantum limit (SQL). In the re-
cent controversy, started with Yuen's proposal of a
measurement which beats the SQL, the meaning of the
SQL has been much clarified and yet no one has given a
general proof nor a counterexample for the SQL. Re-
cently, Ni succeeded in constructing a repeated-
measurement scheme to monitor the free-mass position
to an arbitrary accuracy. However, it is open whether
this scheme beats the SQL in the sense sharpened by the
recent controversy. In particular, the following problem
remains open: Can we realize a high-precision measure-
ment which leaves the free mass in a contractive state?

In the present paper, I shall give a model of measure-
ment of a free-mass position which breaks the SQL in its
most serious formulation. An explicit form of the
system-meter interaction Hamiltonian will be given and
it will be shown that if the meter is prepared in an ap-
propriate contractive state then the measurement leaves
the free mass in a contractive state and the uncertainty
of the prediction for the next identical measurement de-
creases in a given duration to a desired extent. Thus
Yuen's original proposal is fully realized. This result
will open a new way to an arbitrarily accurate non-
quantum-nondemolition monitoring for gravitational
wave detection and other related fields such as optical

communications.
The precise formulation of the SQL is given by Caves

as follows: Let a free mass rtt undergo unitary evolution
during the time r between two measurements of its posi-
tion x, made with identical measuring apparatus; the re-
sult of the second measurement cannot be predicted with

uncertainty smaller than (hz/ttt)'t in average over all
the first readout values. Caves showed that the SQL
holds for a specific model of a position measurement due
to von Neumann' and he also gave the following heuris-
tic argument for the validity of the SQL. His point is
the notion of the imperfect resolution cr of one's measur-
ing apparatus. His argument runs as follows: The first
assumption is that the variance of the measurement of x
is the sum of a and the variance of x at the time of the
measurement; this is the case when the measuring ap-
paratus is coupled linearly to x. The second assumption
is that just after the first measurement, the free inass has
position uncertainty hx(0) ~ cr. Under these conditions,
he derived the SQL from the uncertainty relation
ax(0)ax(z) ~ hzj2m.

However, his definition of the resolution of a measure-
ment is ambiguous. In fact, he used three different
definitions in his paper: (1) the uncertainty in the result,
(2) the position uncertainty after the measurement, and
(3) the uncertainty of the meter before the measure-
ment. These three notions are essentially different, al-
though they are the same for von Neumann's model. I
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shall make the following distinction: If the free mass is
in a position eigenstate at the time of measurement of x
then the precision e of the measurement is defined to be
the uncertainty in the result and the resolution o. is
defined to be the deviation of the position of the free
mass just after the measurement from the readout just
obtained. In what follows, I shall give precise definitions
for the case of superposition. For the free-mass state y
at the time of measurement, let P(a I y) be the probabil-
ity density of obtaining the result a and let y, be the
state of the free mass just after the measurement. The
physical design and the indicated preparation of the ap-
paratus determine P(a I y) and the transition (or state
reduction) y y, for all possible y. These two ele-
ments will be called the statistics of a given measure-
ment. This implies that if two measurements are identi-
cal then the corresponding two statistics are identical. A
difficult step in defining the precision is to extract the
noise factor from the readout distribution. Even if the
measuring apparatus measures the position observable
approximately, the readout distribution P(a I yr) should
be related to the position distribution I y(x) I; this rela-
tion can usually be expressed in the following form:

P(a I y) -„G(a,x) I y(x) I
'dx, (1)

where G(a, x) is independent of a particular wave func-
tion y(x) and expresses the noise in the readout. Obvi-
ously, P(a

I y) =
I y(a) I

for all y (i.e., the noiseless
case) if and only if G(a, x) =8(x —a). From Eq. (9) of
Ref. 8, in the case of von Neumann's model, G(a,x)
=

I O(a —x) I, where O is the prepared state of the me-
ter. " Roughly speaking, G(a, x) is the (normalized)
conditional probability density of the readout a, given
that the free mass is in the position x at the time of mea-
surement; hence the precision e(x) of this case should be

e(x) ' = (a —x) 'G(a, x)da.

Thus if the free mass is in a state y at the time of mea-
surement, the precision e(y) of the measurement is
given by

e(y) ' =„e(x)' I y(x) I

' dx.

By similar reasoning, for the free-mass state y at the
time of measurement, the resolution cr(y) of the mea-
surement is given by

o(yr) = o(a) P(aI y)da,
(3)

o(a)'=J (a —x)'I y, (x) I
'dx.

Let A(y) be the uncertainty of the readout for the free-
mass state y just before the measurement and Ax(p) the
uncertainty of the free-mass position at any state p.
Suppose that the noise and state reduction of measure-
ment are unbiased, in the sense that the mean value of
the readout is identical with the mean position of the free

mass just before the measurement and that the mean po-
sition of the free mass just after the measurement is
identical with the readout value, i.e.,

xP(x I y)dx=&llr Ix I y&,

(y, Ix I y, &=a,

(4)

(5)

for all possible y. Then, in general, we can prove the re-
lations'

e=e(y) Ag for all y,

o=o(y) =kg for all y.
(8)

Thus we have cr(ltr) =hg=e(z) and hence the SQL
holds. However, it is not at all clear that every measure-
ment should or might satisfy the relation o(y) '
~ [e(z)'l.

I shall now turn to Yuen's proposal. His observation
is that if the measurement leaves the free mass in a con-
tractive state y, for every readout a then we can get

Ax(z)(y, ) « (hz/2m) 't «Ax(0)(y, ). (9)

Thus the SQL breaks if such a measurement has a good
precision e(U, y, ) « (hz/2m) 't, where U, stands for the
time evolution: In fact, from the combination of Eqs.
(6) and (9), we get

a(z)' =a(U, y, )'

=e(U, y, )2+hx(z)(y, )2« hz/m (10)

A(lp) =e(ter) +Ax(lp) (6)

o(y)'=„ax(y, )'P(a
I y)da. (7)

Let e,„be the maximum of e(y) ranging over all y.
Then we have e,„=0if and only if P(x I y) =

I y(x) I

for all y and that o(y) =0 if and only if d,x(y, ) 0 al-
most everywhere [with respect to P(a I y)da]. These re-
lations clearly show the precise meaning of the assump-
tions used for the derivation of the SQL by Caves. The
first assumption always holds for the precision by Eq. (6)
and the second assumption always holds for the resolu-
tion in average by Eq. (7). Thus his proof has shown

that if the resolution is (less than or) equal to the pre-
cision then the SQL holds. In fact, under the sole condi-
tion o(y) ~ [e(z) ], where the brackets mean the aver-

age over all readouts at time 0, we can derive from the
uncertainty relation the following estimate for the uncer-
tainty h(z) of the second measurement at time z:

[&(z)'] = [e(z)']+hx(z)'l ~ o(y)'+ l&x(z)']

= [ax(0)']+ [ax(z)'] ~ [2ax(0)ax(z)]

~ hz/m

Now let Ag be the uncertainty of the pointer position
just before the measurement. Then in von Neumann's
model we have

386



VOLUME 60, NUMBER 5 PHYSICAL REVIEW LETTERS 1 FEBRUARY 1988

The model presented below has the following surprising properties: (1) If the prepared state of the apparatus is an
arbitrarily chosen contractive state I pvaco) (a=0), then it leaves the free mass in the contractive state I

pva'co)
(a'=a) just after the measurement for the readout value a, where'

and

&x I pvaco& =
xhlp —vl' exp

mco 1+2(t
2

(X Xp) + Pp(x Xp)
2h Ip —VI'

I p I
—

I vl =1; (=Im(p v) & 0; a =xp+ipp, xp,pp reaL (i2)

(2) The precision t. (y) of this measurement is such that e(y) =0, for any free-mass state ilc just before the measure-
ment.

Thus the SQL can be broken to any extent. Further, this measurement corresponds to the measurement I pvaco)&a I

in the terminology of Gordon and Louisell. '

The model description is as follows, parallel with the exposition of von Neumann s measurement by Caves; for the
detailed account omitted here, see his paper. The free mass is coupled to a meter which is a one-dimensional system
with coordinate Q and momentum P. The coupling is turned on from t = —z to t =0 (0 & z« z) and it is assumed to
be so strong that the free Hamiltonians of the mass and the meter can be neglected. I choose the following interaction
Hamiltonian:

0 =(Ktt/3 J3)[2(xP —QP)+ (XP —QP)},

where K is the coupling constant chosen as Kz =1. Then if @p(x,g) =f(x, Q), the solution of the Schrodinger equa-
tion is

9', (x,g) =f[—', 43[x sin( —,
' (1 —Kt)z)+ Q sin( —,

' Ktz)], —,
' 43[—x sin( —,

' Ktz)+Q sin( —,
' (1+Kt)tt)]] (i4)

P(g I w) =„»I +(x,g) I

'=
I v (g) I

'

Thus the expected result is & Q) =
& y I

x I y), and hence
Eq. (4) holds. The variance of the readout coincides
with the variance of x at t = —~:

At t = —z, just before the coupling is turned on, the un-
known free-mass wave function is y(x), and the meter is given by
prepared in a contractive state @(Q)=&Q I pvOco&, so
that the total wave function is %'p(x, g) =lp(x)@(g);
expectation values for this state are &Q)p=&P)p=0. At
t =0, the end of the interaction, the total wave function
becomes

e(x,g) =y(g)e(g —x). (is)

[Compare with Eq. (6) of Ref. 8; the statistics are very
different. ] At this time one reads out a value of Q for Q
by another instrument precisely, from which one infers a
value for x. Then the probability density P(g I y) to ob-
tain the value Q as the result of this measurement is

aj =a(y)'=ag(e)'=ax(y)'

=&calx'I y&
—&ylx I

y&'.

The free-mass wave function yg(x) =y(x I Q) just after
the first measurement (t =0) is obtained (up to normali-
zation) by

y(x I Q) = [1/P(g I y) '"]~(x,g) = [~(g)/I w(g) I ]+(g—x) =C&x
I p vg~),

w,'g =Ax(z)(yg)'=Ax(z)(
I pvgco)) '

—(z+2h, I p. —v I

'
I p+ v I

'coz'
Nl 4N 4

(20)
&lyg I x(z) I yg) =&pvgco I x(z) I pvgco) =g,

The last equality follows from Eq. (13) of Ref. 4. Thus
the desired relation has been realized; see Ref. 4 for the
detailed minimization of Ax(z).

It should be noticed that the general realization prob-

where x(z) =x+Pz/rn (One doe.s know the wave func-
tion yg. ) The unpredictability of the second measure-
ment is characterized by the variance of the readout [ob-

w here C (I C I
=1) is a constant phase factor. From Eq.

(8) of Ref. 4, &yg I x I yg =Q and hence Eq. (5) holds. tained by the same statistics as Eq. (17)],
During the time z until the second measurement, the

free mass evolves unitarily. Observer's prediction for the
mass position at time t = z can be made as
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lem of quantum measurements was resolved in my previ-

ous paper, ' where I proved that every completely posi-
tive operation-valued measure has a unitary realization.
Thus, every Gordon-Louisell-type measurement has a
unitary realization. In this paper I have given an explicit
Hamiltonian realization of one of them.

I can say following Schrodinger' with a little altera-
tion: The systematically arranged interaction of two sys-
tems is called a measurement on the first system, if a
directly sensible variable feature of the second is always
predictable within certain error limits when the process
is repeated immediately or after some arranged dura
tion. In the latter case, the measurement will be called a
focused measurement
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