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Ferromagnet-Nonferromagnet Interface Resistance

There has been recent interest in conduction-electron
spin injection across a ferromagnet-paramagnet interface
as a new phenomenon with many experimental applica-
tions. Briefly the idea is as follows. Electric current in a
metallic ferromagnet (F) is carried unequally by spin-up
and spin-down electrons, in contrast with a normal metal
(N) in which the current is shared equally by the two
spin subbands. Aronov' proposed that the passage of
current across an interface from F to N, carried unequal-

ly by up and down electrons, would inject a nonequilibri-
um magnetization BM in N. This BM would diffuse into
N from the interface to a depth 8, = (2DT2) '~ where D
and Tz are the conduction-electron diffusion constant
and spin-relaxation time. Associated with BM is a differ-
ence in spin-up and spin-down chemical potentials

pt pl 2pabM/&, with pa the Bohr magneton and X
the magnetic susceptibility. Silsbee' noted that this
difference in chemical potential could be detected as an
open-circuit voltage across an interface between a second
ferromagnetic probe, a spin detector, and the N metal.
Johnson and Silsbee demonstrated the validity of all
these ideas in a two-probe, injector/detector experiment.

If the probes serving as detector and injector are the
same, the voltage due to the magnetic disequilibrium will

appear as an excess resistance of the interface. In a re-
cent Letter, van Son, van Kempen, and Wyder have cal-
culated this excess spin-coupled ("current conversion")
interface resistance for the limiting case of a clean (no
potential barrier) FN interface and have suggested two
possible experiments, one of which has already been per-
formed. First, we show how the result based on the ex-
tremely limiting assumption of a high-conductance inter-
face may be generalized to include the interface resis-
tance. Second, we present an indispensable technique
that unambiguously identifies the spin-coupled signal in

any relevant experimental geometry.
van Son, van Kempen, and Wyder take the continuity

of the individual spin-subband chemical potentials pt
and pt as an interfacial boundary condition, neglecting
the discontinuity in p's that would occur in the presence
of substantial scattering or a transmission barrier at the
interface. Electron-spin-resonance (ESR) experiments
on bimetal samples yield transmission coefficients t of
0.001-0.1 which suggests that the ideal interface may be
hard to produce and makes the ideality assumption ques-
tionable.

The junction-resistance calculation may be generalized
by use of the approach of Johnson and Silsbee in the
appendix of an article presenting a classical thermo-
dynamic treatment of the spin-injection/detection experi-
ment. The parameter p describes the spin inequivalence
in F and is related to the a of van Son, van Kempen, and
Wyder by p=2a —1. A similar parameter g describes

the spin asymmetry of the interface. If we take G as the
conductance of the interface in the limit of no spin-
coupled resistance, the full resistance is

gN(p —tl) '+gFr)'(1 —p')+Gp'(1 —tl')

gNgF(1 —p )+G(1 —
rl )[gN+gF(1 —p )]

Here g; =o';/8; is the conductance of a length of the bulk
material equal to one spin depth 6;, and the cross section
of the conductors is taken to be unity.

In the G~ ~ limit the result R =p /[gN+ (1
—p )gF] is the same as in Ref. 3, a result valid only if
G»gN, gF. A simple estimate gives G/gN=tN(TzN/
TN) ' & 0.3 with (for aluminum) tN & 0.01 from ESR
results (Magno and Pifer5) and T2/r = 10 from Ref. 2,
and thus indicates that the high-G result is not generally
valid. We see from the equation displayed above that
the interpretation of the spin-coupled signal must include
effects of discontinuities of p at the interface (i.e., ri),
and that it becomes a small fraction of the background
resistance I/G.

van son, van Kempen, and Wyder remark on the need,
but do not suggest a means, to distinguish between the
spin-coupled signal and other sources of resistance. We
suggest that, just as one can control the amplitude of a
charge-imbalance signal by varying the temperature T
near T, (and even turn off the effect for T & T, ), in the
magnetic problem, for either the interfacial resistance or
the two-probe experiment, one can alter the size of the
spin-coupled effect by applying a transverse magnetic
field 8 (the Hanle effect). For large enough fields (10 to
100 G), the field-induced precession dephases the spins,
destroying bM and equalizing the chemical potentials

pl =pl so that the spin-coupled resistance disappears.
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