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Microscopic Theory of the Proximity-Induced Josephson Kff'ect
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The proximity-induced Josephson effect is studied microscopically by analysis of the quasiclassical
transport equations in a sandwich geometry. The main Shapiro step is found at V hv/4e. It is thus
concluded that the proximity-induced Josephson eA'ect is not seen in a recent experiment by Han et al.

PACS numbers: 74.50.+r

Han et al. ' have recently made experimental studies
of point contacts between a strong (s wave) supercon-
ductor (Nb, Ta) and a weaker superconductor of un-

known type (UBet3, CeCu2Siz, LaBe&3). Surprisingly,
they found both the dc Josephson effect and the ac
Josephson effect (Shaprio steps) even at temperatures
considerably above the transition temperature of the
weak superconductor. To interpret their observations,
they introduced a theory of a "proximity-induced
Josephson eff'ect, " in which the Cooper pairs leaking
from the bulk superconductor not only induce a region of
superconductivity in the weak superconductor, but also
weakly couple the order parameters in the bulk and the
induced superconducting regions, thereby permitting dc
and ac Josephson effects. Subsequently, Kadin and
Goldman, basing their reasoning on the time-dependent
Ginzburg-Landau equation, disputed this explanation
and argued that the phase of the order parameter in the
proximity region is intimately tied to the phase of the
bulk superconductor.

In this Letter we make a microscopic theory of the
proximity-induced Josephson effect. Our purpose is to
check the assumptions made in the two phenomenologi-
cal theories and to decide whether the proximity-induced
Josephson effect can explain the experiment by Han et
al. We make a model of the junction geometry which
should at least qualitatively reproduce the properties of a
real proximity-induced Josephson effect. Using the gen-
eral quasiclassical theory of superconductivity, we solve
the current-phase relation exactly for this model. For
the dc eff'ect, our calculation justifies the phenomenologi-
cal model of Han et al. , ' but is in clear disagreement
with Kadin and Goldman. In particular, we find that
there can be a nonzero difference of phase between the
bulk and proximity-induced order parameters in equilib-
rium, and that the current-phase relation is of the form
J, =J, sin(2&), i.e., it has twice the phase diff'erence p in

place of p in the conventional Josephson effect. We then
give arguments to show that in the ac Josephson effect
Shapiro steps occur at voltages V„=nhv/4e instead of
the regular voltages V„=nhv/2e [The ana. lysis of Ref. 1

erroneously gives the regular Shapiro steps because it
supposed that the current-phase relation J, =J, sin(2$)
becomes invalid if ( p ( ) tr/2. ] Since steps correspond-
ing to the regular Josephson frequency were seen in the

experiments by Han et al. , we conclude that the experi-
ments" cannot be explained by a proximity-induced
Josephson effect. A possible explanation is that the ob-
served Shapiro steps originate from a regular Josephson
eff'ect between two superconducting regions which both
have higher transition temperatures than the observation
temperature.

The effect we are predicting should be experimentally
observable.

There is a simple physical explanation for the double
frequency of the Josephson current-phase relation. Since
the weak superconductor (denoted by S, order parameter
5) is above its transition temperature T„ its supercon-
ductivity is wholly supported by the strong superconduc-
tor (S', order parameter 6', transition temperature T,')
and it is localized near their contact. This implies that
the maximum phase difference between the order param-
eters is tr/2 because otherwise the strong superconductor
tends to destroy the proximity superconductivity in S.
More specifically, the calculation gives (6 ~

-cosp, and
when combined with the standard Josephson relation

J,—~A~ ~h'~ sing, it gives J, -sin(2&). An interesting
situation arises when p approaches ~ tr/2 because the
order parameter vanishes there. This special point is dis-
cussed after the model calculation.

Our model is the following: In addition to two pure
superconductors 5 and S' and a weakly transmitting
barrier between them, we add another barrier on the
weak superconducting side; see Fig. 1. The part of the
weak superconductor not contained between the barriers
is denoted by X and, in order to avoid introducing volt-

age gradients, we take it to have an infinite conductivity.
We assume two small ratios: (1) The distance between
the barriers D is small compared to the coherence length
g~«„=hvF/2tzkaT, and (2) the transmission probability
z through both barriers is small compared to D/(v«„.
The former condition allows one to neglect the variation
of the order parameter in the proximity region S. The
latter implies that a particle entering 5 will stay there
for a long distance compared to g~«„. For the following
calculation several of the assumptions can be relaxed
and, we believe, none of them is crucial for our qualita-
tive conclusions.

The problem can be solved at all temperatures with

the standard quasiclassical theory. The transportlike
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FIG. l. (a) The order parameters and currents and (b) one
representative trajectory in the model of a proximity-induced
Josephson effect. The calculation presented here is an exact
expansion to leading order in the small parameters D/gp„„and
(prox/(u2 u1)

Here the subscript ij denotes the component of the
Nambu matrix. The coupling constant Vq~s is chosen
smaller in S than in S' to produce the required T, 's. We
are interested in the temperature region between the
transition temperatures (T, & T & T,'). Equation (1)
has the intuitive feature of being an ordinary differential
equation along straight lines (R=Ro+uk, where u is

the distance along the trajectory). Equations (1) and
(2) have to be supplemented by a boundary condition
specifying what happens when a trajectory hits a surface.
We use the simple boundary condition that the "parti-
cle" [solution of Eq. (1)] is transmitted with probability
r and reflected with probability 1 —r on the barriers.
This is equivalent to the assumption that the barriers are
completely insulating except for small "holes. " One
representative trajectory of a particle is sketched in Fig.
1(b). The electric current can be calculated from this
formula

di1k de "
j(R) =2evFN(0) kgii (k, R;e).

4~ ~ 4xi
(3)

h(R)—:&12(R)

di1k ~ de .K= VBcs(R)
&

g12(k, R;e).
4z " 4xi

(2)

equation reads

[ienri —h, g ™(k,R; e)n]+iv Fk Vg™(k,R;en) =0 (1)
A

for the 2X2 matrix Matsubara propagator g™(k,R;e„),
where e„=rr(2n+1) T. For a time-independent problem,
the retarded, advanced, and Keldysh propagators satisfy
the same equation with ie„replaced by e. The normali-
zation condition gg = —rr applies to g™,g, and g, but
for g one has g g +g "g"=0. Equation (1) forms a
closed set together with the weak-coupling gap equation

The plan is to solve the propagator from Eq. (1) with
a general form of 6 and then apply (2) to determine 6
self-consistently. Because of assumptions 1 and 2, we

can take the order parameters to be constant in both S
and S'. Without loss of generality we take the order pa-
rameter in S' to be real (5'=id'i2) and in S we use the
general form g, =i(hiii+42i2), A1 =1m', 42=Red].
Because of assumption 2, the transmissions of both bar-
riers can be calculated separately. The general propaga-
tor can be represented as g =gg;i;, where the i s are
the Pauli matrices.

Let us first study the S-S' junction. For a spatially
constant gap, Eq. (1) has three independent solutions:
one constant, one exponentially growing, and one ex-
ponentially decreasing. s Matching these to the bound-

ary conditions gives the Matsubara propagator in S:

g =—
t-'n

—h, 2ask+i h, ] e„
+8~ A~aSk+ih2En

1I ~
I

'
( )l ]

en~ ~2 en I ~ I
+iska+ r-11

a I 5 I (e„+aa'+ 5'62)

Here u is the distance along the trajectory and the junction is at u =u2 [u & u2 on S, Fig. 1(b)], a =(e„+ Id, I
)'/,

a'=(e„+5' ) '/, and sk is plus (minus) unity when the momentum is parallel (antiparallel) to the trajectory. The re-
tarded and advanced propagators can be obtained by analytic continuation. Because this junction is in equilibrium, the
Keldysh propagator is given by

- K 2[f( ) ] (-R -ri)

where f(e) is the Fermi distribution.
In the N-S junction (junction at u =u 1), the Matsubara propagator on the side S is given by

(5)

g a
&n

~2ask + l 41

+Cr —A a 1+sikh „2expe[ —2a (u —u 1)lv F],

1 I /)
I

'
C= —s,/a(a+ I e. I ).
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The retarded and advanced propagators can be obtained
by analytic continuation. In the Keldysh function, we al-
low the distribution function f(k, e) to have a small devi-
ation from the equilibriutn bf(k, e) in order to represent
the incoming normal current. Physically, all the quasi-
particles injected at energies below the gap h, are con-
verted into supercurrent and the same number of holes
are Andreev-reflected back. No energy relaxation is
needed here because energy is conserved in such a pro-
cess. Contrary to Refs. 4 and 5, no charge imbalance
will develop. Quasiparticles having an energy greater
than 5 are neglected because their contribution to the
phase-dependent current [Eq. (10) below] is a small
correction (- r ).

We now apply the self-consistency equation (2) in S.
Neglecting terms higher than first in quantities 6&, h2,
and r, we obtain the simple equations

stint+ j'g2/! g! '=o, ~2lnt —jan/! g! ' —P=0. (7)

Here t = T/T, & 0,

e A

/

FIG. 2. Diagram illustrating the proximity Josephson eAect.
As the phase increases, the order parameter in S is given by the
intersection of the straight line with the two circles. On the
right (left) circle the order parameter is plus (minus) A2+itt~,
in accordance with Eq. (7). For comparison, the solution for a
regular Josephson junction is indicated by the dashed circle.

&N(0)j] and p describes the supporting effect of the
bulk superconductor S'. If we write the order parameter
in Sas

vFt ~ "dQk ~j= de k. xbf(ke),
2D ~ ~ 4z
vFr

4D ! e ! [(e'+g' )' +!e ! ]

6 =52+id~ =A exp( iP)—,

Eq. (7) has the solution

sin(2p) 2jlnt/p, 2 = (p/Int )cosp.

(8)

(9)

physically, j is proportional to the current [j=4eD This solution is depicted in Fig. 2. The current as a
function of the phase is given by

eN(0)vFr
8D lnt

Tg
n ! e!n[( e+g ) +!eg! ]

sin(2&), (10)

as claimed in the introduction. Note that the current conservation in the system is implicit in Eqs. (1) and (2) and no
separate conservation equation was needed.

It is useful to calculate the free-energy functional of the system. From the general functional of the quasiclassical
theory, one can derive the following differential equation:

dG =2N(0)„d RRe
d teak de

. g)2 dh, *
VBCS " 4Ã 47ri

The part in the parentheses is the self-consistency equa-
tion which for the present system is given by the left-
hand sides of (7). Integrating (11), one obtains the free
energy functional

G(A, p) 2DN(0)[2 A lnt —PAcosp —yp]. (12)

This justifies the phenomenological theory of Ref. 1 be-
cause the first two terms are just the same as there. The
last term describes the energy of the current source in a
current-drive system.

To deduce the ac Josephson effect we argue as follows.
The phase and the amplitude of the order parameter (8)
are physically quite different: In a voltage-driven junc-
tion the phase follows the external voltage difference ac-
cording to the standard relation dp/dt =2eV/h. ' In a
current-driven system, the phase is determined by an
equation where the capacitance of the junction plays the
role of a mass and the resistance describes dissipation.

!
In contrast, the amplitude has no inertia and for any tW) it
instantly adjusts itself to the p-dependent equilibrium
value (if the rate of change of p is slow compared to
6/ft). This equilibrium value crosses zero at p= ~x/2
according to Eq. (9). This solution seems physical to us
because once p is outside the region ! p! & 2x/2, the bulk
superconductivity supports a proximity-induced order-
pararneter amplitude with the opposite sign. Therefore
we conclude that Eqs. (9) and (10) are valid at all values
of p. When this is combined with dp/dt =2eV/6, one
gets the main Shapiro step at V=hv/4e. This is in con-
trast to Ref. j. where it was incorrectly assumed that the
amplitude has to remain positive, leading to the regular
Shapiro step (V=hv/2e).

We should add the following qualification to the result
of the ac Josephson effect. We have not been able to
rule out the possibility that the system, having reached
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the point
~
5

~
=0, recovers through some fundamentally

nonequilibrium way to finite h, . If this were the case, it
would give the Shapiro step at even lower voltage and
therefore it does not change our conclusion that the
proximity-induced Josephson effect is not seen by Han et
al.

The proximity-induced Josephson effect exists in prin-
ciple in all Josephson junctions in which the transition
temperatures of the two superconductors are not the
same, at least when the transmission probability r is
small. The equation for the current (10) should be qual-
itatively correct when D (the thickness of our model
slab) is replaced by the temperature-dependent coher-
ence length. The proximity critical current is smaller
than the regular Josephson current because the former is

proportional to z whereas the latter is linear in z

We conclude with some brief comments on the
analysis of Refs. 2 to 5. First, the calculations of Refs. 2
and 3 on the proximity model are not relevant to the ob-
servations because, as we have shown, these cannot be
explained by the proximity effect. The main conclusion
of Ref. 2 that the bulk superconductivity in UBe~3 is hos-
tile to the superconductivity found above T, may remain
true, but the quantitative calculation supporting this con-
clusion (solid line of Fig. 2 in Ref. 2) breaks down.
Second, the theory of Ref. 5 fails because it neglects the
continuity equation for the current, as was already point-
ed out in the Response of Wolf, Millis, and Han. "
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