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at the (110) Surface of Aluminum

A. G. Eguiluz
Department of Physics, Montana State UniversityB, ozeman, Montana 59717

and

A. A. Maradudin and R. F. Wallis

Department of Physics, University of California at Irt. ine, Iruine, California 92717
(Received 9 October 1987)

We have calculated the dynamical matrix for an aluminum slab bounded by a pair of (110) surfaces

using a self-consistent implementation of pseudopotential perturbation theory. The screening response of
the conduction electrons to the field of the ions is obtained within the local-density approximation of
density-functional theory. Both relaxed and unrelaxed geometries are treated. We present numerical

results for the dispersion curves of surface phonons. Comparison is made with recent theoretical and ex-
perimental results.

PACS numbers: 68.35.Ja, 73.60.Aq

The majority of the existing calculations of surface-
phonon properties are based on force-constant models, in

which the atomic force constants in the interior of the
crystal are generally obtained from bulk-phonon disper-
sion curves. The force constants coupling atoms in the
outer atomic planes are usually modified' in order to
reproduce the experimental data. However, for a given

physical system there is a built in ambiguity in a force-
constant model: More than one model can explain the
same data. '

These attributes of the force-constant model approach
have prompted us to carry out microscopic calculations
of surface-phonon dispersion curves in simple, i.e., sp-
bonded, metals on the basis of a self-consistent pseudo-
potential perturbation theory. In this Letter we report
results for the case of Al(110), a surface which has re-
cently received attention, both experimentally and

theoretically.
The approach used in the present work differs

significantly from previous calculations of this type. In
the pseudopotential perturbation-theoretic calculations
of Calandra and co-workers for alkali-metal surfaces,
the ground state and response properties of the electronic
subsystem were calculated with the infinite-barrier mod-
el for the electron wave functions. The present work is

based on the self-consistent evaluation of the electron
wave functions and screening response of the conduction
electrons by the use of the local-density approximation
(LDA) of density-functional theory. The limitations of
an infinite-barrier-model-based screening calculation '

are in fact illustrated by the results of Calandra and co-
workers. These authors find that exchange and correla-
tion (XC) effects, which are absence from the infinite-
barrier model ground state, must be introduced in the
response calculation in order to stabilize the surface-
phonon spectrum for the case of, e.g. , potassium (001).

Moreover, it has been shown recently that a surface
screening calculation that does not treat the response
problem self-consistently with the ground-state problem
leads to a violation of some surface sum rules. " Clearly,
then, XC should be treated self-consistently, as we do.
The present approach also differs from that of Ho and
Bohnen. These authors evaluated a few interlayer and
intralayer force constants at the surface of Al(110) by
creating appropriate high-symmetry distortions of the
outermost atomic layer. The distortion energy was ob-
tained via a pseudopotential-based total-energy calcula-
tion. With this procedure, values of the phonon frequen-
cies at the X and I'points in the surface Brillouin zone
(SBZ) were obtained. A force-constant scheme was
then fitted to these frequencies in order to obtain disper-
sion curves along symmetry lines in the SBZ. By con-
trast, our method (as does that of Ref. 9) yields all the
interatomic force constants of a metal slab.

The solution of the central problem in our approach,
namely the screening of the ion cores by the conduction
electrons, requires the knowledge of the density response
function for interacting electrons, X(xx'). In density-
functional theory X(xx') satisfies an integral equation of
the form

X =X +X VX

where Z (xx') is the density response function for
noninteracting electrons, which is obtained from the
knowledge of the LDA electron wave functions and ener-

gy eigenvalues, ' and V(xtx2) is the full electron-
electron interaction. In LDA V(xtx2) consists of the
bare Coulomb interaction plus the local interaction
6(xt —x2)dVxc(xt)/dno(xt), where Vxc(x) is the XC
contribution to the effective potential in the LDA ground
state, and no(x) is the ground-state electron density. ' '

For the case of sp-bonded metals, where the pseudopo-
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FIG. 1. Calculated phonon dispersion relations for bulk
aluminum. The points represent the experimental data (neu-
tron scattering) quoted in Ref. 15.

tential can be expected to be weak, one can use the solu-
tion to Eq. (1) obtained recently' for an electron gas
confined self-consistently in the direction normal to the
surface on both sides of a jellium slab, as the basis for a
perturbative formulation. Let us call V~(x) the dif-
ference between the potential due to the discrete array of
pseudoions and that due to the jellium (care must be ex-
ercised in defining this difference ). Carrying out a
coupling-constant integration over the Hamiltonian
XV~(x) (0 ~ A. ~ 1), we obtain for the ground-state en-

ergy Eg, of the conduction electrons to second order in

Vi

E„=Esto'+ d'x no(x) V)(x)

+ —,
' d'x „d'x' V, (x)X(xx') V, (x'), (2)

where Es, and I are respectively the electronic ground-
state energy and the solution to Eq. (1), for V~ =0.
Differentiating Eq. (2) twice with respect to the dis-

placements of the ions from their equilibrium positions
gives the electronic contribution to the atomic force con-
stants. From these the electronic contribution to the
dynamical matrix of the slab is obtained. This must be
added to the contribution from the direct ion-ion force
constants (obtained with Ewald summation techniques).

The above procedure was implemented first for bulk

aluminum, with use of the local form of the Heine-
Abarenkov pseudopotential. Its two parameters (core
radius r, and well depth u, ) were determined by our re-

quiring that' (i) the total bulk energy be a minimum for
the experimental value of the lattice constant, and (ii)
the average of the squares of the bulk phonon frequen-
cies over the Brillouin zone agree with the value extract-
ed from neutron-scattering data. ' ' Condition (i) is of
importance for the consistency of the surface relaxation
calculation. Condition (ii) sets the overall scale for the
vibrational problem. In Fig. 1 we show the dispersion
curves obtained for bulk phonons propagating along
symmetry directions in the Brillouin zone. Overall
agreement with the neutron data is excellent. The elastic
moduli obtained from the long-wavelength limit of the
theoretical dispersion curves are (in units of 10' '

dynes/cm; the experimental values are in parentheses)
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FIG. 2. Calculated surface-phonon dispersion relations
along symmetry directions in the SBZ for an unrelaxed 27-
layer aluminum slab bounded by a pair of (110) surfaces.

C~~ =10.23 (10.68), C~2=6.07 (6.07), and C44=3.62
(2.82). The discrepancy between theory and experiment
for C44 is presumably due to the neglect of higher-order
terms in the pseudopotential in Eg, We note that al-
though the bulk force constants obtained from Eq. (2)
are central, the calculated elastic moduli violate the
Cauchy relation C~2=C44, in qualitative agreement with
experiment. That central-force pair interactions in met-
als can yield elastic moduli such that Ct2eC44 has been
shown by Brovman, Kagan, and Kholas' to be a conse-
quence of the dependence of the electronic polarizability
on the electron density.

In Fig. 2 we show the results of a calculation of the
phonon spectrum for a 27-layer ideal, unrelaxed slab
bounded by a pair of (110) surfaces. (The zone-
boundary frequencies are independent of the slab thick-
ness for slabs thicker than about 23 atotnic layers. ) We
emphasize that the surface calculation has no adjustable
parameters; it has been carried out from first principles,
according to the outline given above, with the values of
r, and u, that were used in the evaluation of the bulk
dispersion curves.

The presence of surface modes below and in the gaps
of the surface-projected bulk branches is clearly seen in

Fig. 2. In fact, the overall nature of the surface-phonon
spectrum is qualitatively similar to the results obtained
by Allen, Alldredge, and de Wetts' in their seminal
work on surface phonons for model fcc crystals with
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FIG. 3. Same as Fig. 2, but for a relaxed crystal.
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Lennard- Jones interatomic interactions.
In Fig. 3 we show the phonon dispersion curves in the

presence of multilayer relaxation. The values obtained
for the percentage change of the first three interplanar
spacings are h, ~2= —5.4, h,23=+0.8, and 634 —2.6,
where a negative (positive) value denotes a contraction
(expansion). The main eÃect of the relaxation process is

to raise the frequencies of the surface modes. '

For both the relaxed and unrelaxed crystals we find

that the xx and yy elements of the dynamical matrix are
reduced substantially for the outermost plane in relation
to their values for the inner planes, a result favoring the
creation of surface modes. For the case of the zz ele-
ment, the smallest value is obtained for the second atom-
ic plane. This also favors the creation of surface modes.

An important feature of our results is that for an atom
in the outermost layer there is a large contribution to the
total dynamical matrix from the first-order term in Eq.
(2). The physical origin of this contribution to the
dynamical matrix is the large gradient of the electron
density profile at the surface. In addition we have that
at the surface, unlike in the bulk, the term of second or-
der in Eq. (2) gives rise to interatomic interactions which
include contributions that are neither central nor pair-
wise. For a given pair of surface atoms the surface acts
as a third body, by virtue of the breaking of the transla-
tional symmetry normal to it which is built into the
surface-screening response function X.

In Table I we compare the values of the frequencies of
the surface phonons measured by Toennies and Woll at
the X and Y points in the SBZ with the corresponding
theoretical values obtained in the present work, and by
Ho and Bohnen. We have that (i) at the X point both
theoretical values are close to the measured surface-
phonon frequency when the calculation is done for the
unrelaxed surface, but not for the relaxed one; (ii) at the
Y point the same conclusion applies for the lower-
frequency mode. On the other hand, our calculated

X Y
Unrelaxed Relaxed Unrelaxed Relaxed

Present work

Ho-Bohnen'

Toennies and
Wo11

15.8

15.3

19.0

17.4

14.8

10.0
12.4
8.7

13~ 2

13.0
13.8
7.9

14.1

9.3
13.5

'Re ference g.
Reference 5.

TABLE I. Comparison of the values of the energies of the
surface phonons measured by Toennies and Woll for Al(110)
at the X and Y points in the SBZ with the theoretical values
obtained in this work and by Ho and Bohnen. (Energies are in

millielectronvolts. )

value of the frequency of the higher surface mode agrees
very well with experiment, in the presence of relaxation.

Toennies and Woll have argued that the quantitative
disagreement between the value of the surface phonon
frequency measured at X and the theoretical value of Ho
and Bohnen is possibly due to systematic errors in the
theory (they question, e.g. , the validity of LDA in the
surface-phonon calculation, also used in the present
work). While this may turn out to be the case, we would
like to point out that another possible reason for the
disagreement between the measured values of the surface
phonon at X and the theoretical values obtained by Ho
and Bohnen and in our work may be the poor quality of
the Al(110) surface used in the experiments, which con-
tains a high density of defects and steps, the latter hav-

ing a mean separation of =15 A. Toennies and Woll ar-
gue that at X the surface phonon frequency is insensitive
to the coupling of a surface atom to its two first neigh-
bors in the surface plane, which would then make the
quality of the surface unimportant. However, a numeri-
cal test based on changing this coupling shows that the
opposite is true: The frequency of the surface phonon at
X does depend sensitively on the coupling of a surface
atom to one of its neighbors in the surface plane.

The pseudopotential perturbative approach is limited
to free-electron-like metals. In evaluating the force con-
stants for non-free-electron-like metals, the eA'ects of the
electron-ion potential must be incorporated into the
response function X(x,x'), which remains the key ele-
ment of the theory.

In conclusion, we have presented a calculation of
surface-phonon dispersion for Al(110) whose salient
features are these: (i) The underlying bulk calculation
gives dispersion curves which agree very well with exper-
iment along symmetry lines, (ii) the surface calculation
has no adjustable parameters, (iii) both relaxed and un-
relaxed geometries are treated on the same footing, and
(iv) the full set of interatomic force constants for the
slab has been implicitly obtained in the evaluation of the
dynamical matrix. To the extent that pseudopotential
perturbation theory may remain valid for the surface vi-

brational problem, our results show that the net restoring
force on an atom in the outermost layer is not in the na-
ture of a sum over pair potentials. This force includes
significant effects due to the surface electronic environ-
ment (large gradient in the electron density profile), and
to the surface screening process (through which, for a
given pair of atoms, the surface plays the role of a third
body).
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