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Quantum Suppression of Irregularity in the Spectral Properties of the Kicked Rotator
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The statistical properties of the quasienergy spectrum are used to measure the influence of quantum
effects on the quantum kicked rotator which displays chaotic behavior in the classical limit. A transition
from orthogonal-ensemble statistics in the semiclassical limit (h 0) to Poisson statistics in the quan-
tum regime is observed. In view of previously obtained results for this system the dependence on the ir-
rationality of 6 is discussed.

PACS numbers: 03.65.—w, 05.45.+b

The statistical properties of the spectra of quantum
systems have been found to be a significant measure for
the degree of integrability of the same system in its clas-
sical limit. Using semiclassical arguments, Berry and
Tabor ' have shown that integrable systems have an un-
correlated spectrum showing a Poisson distribution for
the energy separations of adjacent levels. On the other
hand, the theory of random matrices has been applied
successfully to the analysis of the spectral properties of
classically chaotic systems. In the intermediate re-
gime, i.e., for systems that undergo a transition from
nearly integrable to completely chaotic behavior in' their
classical limit, a transition between these extremal cases
has been found as a function of the classical degree of
stochasticity. ' Thus the statistical properties of the
spectrum may be used as a measure for the degree of
regularity in the quantum system.

In this Letter we apply this approach to the quantum
kicked rotator, introduced by Casati et al. as the basic
model to study "quantum chaos. " We will present re-
sults on how the semiclassical behavior is affected by
quantum effects of varying strength, whereas previous
work mostly studied the influence of an increasing degree
of classical stochasticity in the semiclassical limit. The
statistical properties of the spectrum of the kicked rota-
tor have been discussed before by several authors. ' Ac-
cording to the work of Feingold and co-workers, the
spacing distribution for driven Hamiltonian systems

4n+ t
=

4n + 2ttpn,

p„+ t p„+(k/2tt) sing„+ t.
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The kick strength k controls the stochasticity of the stan-
dard map. For k 0, the system is nearly integrable;
for k = 1 the last Kolmogorov-Arnol'd-Moser torus
disappears and diffusion in the p direction becomes possi-
ble.

Note that besides the rotational symmetry p' =&+2tr
and parity conservation (p' = —p, p'= —p), the discrete
translation p'=p+1 does not change the classical dy-
namics which defines a (classical) scale of momentutn.
This periodicity is a consequence of the special time
dependence of the driving field. The corresponding
canonical transformation (p,p) ~ (O,I) which leaves the

should be always Poissonian. We will relate our results
to this work below.

The kicked rotator is a quantized version of the stan-
dard map. ' The Hamiltonian of the classical system
reads

p kI0- p — cosy'„b(t nT). —
2I T

Below we use the dimensionless units, i.e., we assume
I=1, T=2x. The Hamiltonian equations can be in-
tegrated over one period of the driving force to give the
classical map (y„denotes the variable y after the nth
kick):
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Hamiltonian (1) invariant can be given in terms of a

generating function" which reads

F„(y,I,r) =(I+n)(y n—r)+ ,' n —r (3)

—(i/h )xp2 i (k/2~A )cosy (4)

for the standard map. For any time dependence with

bounded spectrum, this translational symmetry in p will

not appear.
By application of Floquet's theorem the quantum dy-

namics can be described by the discrete time-evolution

operator
~ f 2$

U U(2x, 0) =Texp —— diH(r)op

which can be given explicitly in p representation:

U =e ™iJ,(k/2nh ) (5)

where p ~
m) = hm ( m) and J„are Bessel functions of the

first kind. As a result of the discrete set of eigenvalues of
the operator p, a second momentum scale arises in the
quantum system. Depending on whether the classical and
the quantum momentum scales are commensurate or
not, i.e., h [namely the ratio h/(2+I/T) in the original
units] is rational or irrational, the propagator will have a
continuous (band) or a discrete spectrum. Since we
want to calculate the quasispectrum of U numerically,
we will confine ourselves to the case of rational
=M/N For .NM even one can reduce U to an NxN
matrix'

U (a) —exp imam — i (m——m') —g exp
W J-i

where a E [0,2x] is the Bloch number related to the
discrete translational invariance p'=p+M of the quan-
tum system. Comparison with the classical system shows

that M is the number of first-order resonances within the
period of the quantum system. For irrational 6, the
classical periodicity of the system has no quantum ana-

log.
The statistical properties of the spectrum of a quan-

tum system in the semiclassical limit depend on the in-

tegrability of the corresponding classical model. A wide-

ly used criterion for the characterization of a given spec-
trum is the distribution of nearest-neighbor spacings.
Berry and Tabor' showed that for a classically integra-
ble system this distribution is Poissonian. For classically
chaotic systems it is possible to map the quantum-me-
chanical eigenvalue problem to a complicated mechani-
cal system whose integrals of motion can be associated

—i(m —m') +i cos2' . k 2'+ a
N 2@A N

with the spectral distribution function of the quantum
system. This procedure gives agreement with certain
random matrix ensembles: the Gaussian orthogonal en-
semble (GOE) for autonomous systems and the circular
orthogonal ensemble (COE) for periodically driven sys-
tems. For these ensembles the spacing distribution is
given by the Wigner surmise

p(x) = —,
' 1rxe (7)

to a very good approximation (the spacing x is measured
in units of the mean spacing).

For systems which show a transition from regular to
chaotic behavior in the classical limit, several interpola-
tion formulas for the spacing distribution have been in-

troduced (see, e.g., Ref. 5). In this work the one given

by Berry and Robnik' (quoted as BR in the following)
will be used:

p(x, q) [(1—q) erfc[(Jx/2)qx]+[2q(1 —q)+(n/2)q x]e ' & " }e

px+L
[n(e) Ae 8] 'de, — —163(L) =—min

L A,B "~ (9)

where n(e) is the number of states with energy below e.
Measuring L in units of the mean level spacing one finds

53(L) =L/1 5 for Poisson statistics, (loa)

43(L) =1/x lnL —0.007 for OE statistics (L ~ 15).

(lob)

As before in the case of the level-spacing distribution a
transition between the two limiting cases depending on

This gives (7) for q =1 and the Poisson distribution for
q=0. Another characteristic statistical quantity is the
rigidity b,3 which is a measure for correlations in the
spectrum:

the parameter q can be observed (see, e.g., Ref. 5).
To study the level statistics of the kicked-rotator sys-

tem, one has to take into account all symmetries of the
system. A well-defined result can be obtained in the sub-
space defined by specific choices of the "good" quantum
numbers parity and Bloch number a only. We analyzed
the spectra of U(a =0) in the even-parity subspace nu-
merically for different values of 6 and kick strength
k =10.0. For this value of k the classical phase space is
covered by a single chaotic trajectory to more than 99%.
Thus, from semiclassical arguments one expects the
quasispectra to obey OE statistics.

In Fig. 1 we present the results for the level-spacing
distribution p(x) and the A3 statistics for two different
values of h. For I3 = 1/1944, the semiclassical prediction
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FIG. 2. BR parameter q from numerical data as a function

of h. The large errors for small values of q are a consequence
of the functional dependence of the BR distribution (8) on q.

(a) (b)

FIG. 1. Level-spacing distribution and h3 statistics of the
calculated quasienergy spectra of the quantum kicked rotator
for k -10. (a) h 1/1944 and (b) h 625/1944. Histograms
in the level-spacing diagrams are numerical data, dashed lines
are best fits by Eq. (8). Solid lines in the h3 diagrams are Pois-
son and OE results (10).

of OE-like behavior holds, while for ft =625/1944= 3

we find a Poisson distribution of the quasienergies. One

may use the value of the BR parameter q obtained from
a least-squares fit of the numerical results by the BR
level-spacing distribution function (8) as a measure for
the statistical properties of the quasispectra. Figure 2
shows the results of this procedure obtained for q as a
function of tl [We diagonalized U(a =0) in the even-

parity subspace for h, =n/1944 which gives 973 levels for
each point. ] In the semiclassical limit ft «1, we find OE
properties of the quasispectrum while for h, -0.1 a tran-
sition towards Poissonian distribution is observed. [Di-
mensionless values of 5 have a physical meaning in the
specific system for which they have been defined only.
To compare our results with different systems one should

note that ft ' is the number of (unperturbed) quantum
levels per first-order resonance of the classical system. ]
These results are in good agreement with the ones ob-

tained earlier for a kicked spin system and the general
observation that quantum effects tend to suppress the
effects of classical stochasticity. '

It was argued that for irrational h, the statistical
properties of the spectra should always be Poisson, since
the eigenvalue problem for U could be mapped on a
quasirandom Anderson model' and an exact proof ex-
ists' that the energy-level separation in an infinite-
dimensional Anderson model obeys Poisson statistics.
However, the numerical confirmation of this conjecture
suffers from the fact that there is no possibility to diago-
nalize the exact propagation operator in the infinite-
dimensional Hilbert space of this system. A truncation
of the propagation operator U as given in Eq. (5) is pos-

sible by use of the fact that the Bessel functions
J„(k/2xh) become negligible for n ~ k/xh which gives
a band matrix for U. In previous numerical work on the
quasispectra of the kicked rotator, this procedure was
used for irrational ft = 1 where Poissonian distributions
of the eigenvalues have been found. This result was in-

terpreted as a confirmation of the equivalence of driven
Hamiltonian quantum systems with the Anderson model.
From our results it is clear that this has to be expected
for values of the quantum parameter lt = 1 independent
of the classical properties of the system. The crucial
question is whether this conclusion can also be drawn if
one approaches the semiclassical limit. Our results indi-
cate that a transition to Wigner statistics occurs at
sufficiently small values of h.

To investigate this question further, we have calculat-
ed the quasispectrum for h«1 (where the truncation
procedure is not applicable) by using a rational M/N
=6 with M, N being relatively prime. For large N the
width of the quasienergy bands decreases exponentially
and the dependence on the Bloch number a may be
neglected. '

To prove that for l't 0 the spectral properties again
change to OE-like behavior, we investigated the spectra
of U(a) for rational approximations to the most irration-
al value of l't near ho~ 1/100 which may be obtained by
adding 1 to the continued-fraction (CF) expansion" of
hp =1/N:

—= [N, 1, 1, . . .].

1+ I+. . .

(The dependence of the time evolution of the quantum
kicked rotator on the irrationality of 6 as measured by
an increasing length of the CF was investigated recently
by Casati et al. ' ) Table I shows the dependence of the
BR parameter q on the length of this expansion where
for technical reasons different N in the range of 103 to
106 were chosen. A dependence on the "irrationality" of
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TABLE I. Dependence of the BR parameter q on the irra-
tionality of h as measured by the length of the CF expansion
of h.

3/320
5/528

13/1360
21/2176

CF (h)

[106,1,1,1]
[105,1,1,1,1l
[104,1,1,1,1,1,1l
[103,1,1,1,1,1,1,1]

1.000
0.989
0.995
1.000

+ 0.204
~ 0.133
+ 0.059
~ 0.085

its has not been found in the range of parameters we were
able to treat numerically (up to l1 21/2176 which re-
quires the diagonalization of a unitary 1089& 1089 ma-

trix). However, any rational value M/N of h corre-
sponds to a pseudorandom lattice with N sites instead of
an infinite system and we are not able to show that
Wigner statistics persists in the limit N ~ with

M/N fixed. Therefore the results of the present pa-
per are consistent with those of Ref. 9 if a transition to
Poisson statistics appears in this limit.

From the results presented above we conclude that
quantum effects can drastically change the spectral prop-
erties of systems which are classically chaotic. The
influence of the irregular character of the corresponding
classical system which is well established in the semiclas-
sical regime disappears. The observed transition of the
spectral characteristics as a function of l't is analogous to
the one found in semiclassical systems (ft 0) when the
parameter that controls the classical stochasticity —k in

the standard map —is varied. Both effects can be seen as
different aspects of the same phenomenon, namely, the
degree of irregularity in a quantum system. It is propor-
tional to the classical one in the semiclassical regime
while it vanishes for l't 1, i.e., classical and quantum
irregularity become independent. If measured by the BR
parameter q it should be possible to describe this quan-
tum irregularity by a universal scaling function q(k, h).
However, a theory which describes this scaling has to go
beyond semiclassical arguments and is not available so
far.

In the investigation of the spectral characteristics in

their dependence on the number-theoretical properties of
l't we have not been able to verify the conjecture that
there should be a transition towards Poisson statistics
when one approaches irrational values of 6 (Table I). It
can be argued that this transition occurs for continued-
fraction expansion of h even longer than the ones con-
sidered in this work. However, one should remember
that the difference in the quantum dynamics between ra-
tional and irrational values of A, is a consequence of the

classical periodicity of the standard map in p which was

generated by choice of a driving force with unbounded

spectrum. Thus, a more realistic system will not show

this phenomenon.
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