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Spectral Function of Holes in a Quantum Antiferromagnet
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By use of an effective Hamiltonian which takes into account the constraints on the motion of a hole in
a quantum antiferromagnet, the spectral function of the hole is calculated. For small exchange and
away from the antiferromagnetic zone boundary, it is found to be dominated by incoherent multiple-
spin-wave processes. The dispersion of the quasiparticle part and the possible implications for disorder-
ing of the quantum antiferromagnet are discussed.
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It is becoming increasingly clear that the new oxide
superconductors are insulating antiferromagnets for
compositions corresponding to one electron per Cu site. '

The magnetic correlations are strongly two-dimensional
(2D) and the three-dimensional ordering at quite high
temperatures T is a parasitic effect. The observed tem-
perature dependence of the correlation length is now well

understood in terms of the fluctuations of a spin- —,
' 2D

Heisenberg model with a Neel-type order as T 0. 2

These discoveries have revived the classic problem of
the transition from the Mott insulating antiferromagnet-
ic state to the conducting nonmagnetic state as the densi-

ty of electrons is varied away from one electron per (Cu)
site. An essential first step in the solution of this prob-
lem is to understand the motion of a hole in the quantum
antiferromagnetic (QAFM) Heisenberg model. 3'

In the case of highly anisotropic, Ising spin interac-
tions, the motion of the hole always leaves behind a
"string" of overturned spins which can be healed only by
retracing of the original path, thus leading to self-

trapped states centered at the original hole position.
These effects were discussed in detail by Nagaev and co-
workers, ' and rediscovered by Hirsch, 6 Shraiman and

Siggia, and Trugman, in their work on hole pairing in
AFM insulators. As recognized by most of these au-
thors, the physics is qualitatively different when the
quantum fluctuations associated with the transverse ex-
change interactions are included from the start. In that
case, in a QAFM with a hole, the ground-state wave
function is a linear combination of the Neel state and
other basis states with different multiple spin deviations.
As the hole hops to a neighboring site, it also creates spin
deviations, so that the new state is a different linear com-
bination of the Neel state and spin-deviated states —with

finite overlap with the earlier state, thus allowing for a
Bloch-wave-type solution. Using wave functions which
bear close resemblance to that of liquid He, we show
that the corresponding hole spectral function can easily
be calculated.

The Hamiltonian H„which describes the hopping of
holes from site to site, takes on a relatively simple form
if we consider the Neel state IN) as the vacuum state.
We define hole operators h; (that obey Fermi statistics)
so that h; =c;tt on the t sublattice and c;tj on the ) sub-
lattice. Furthermore, we define hard-core boson opera-
tors b;, such that b; I N& 0, b;t S; on the t sublattice
and S;+ on the ) sublattice. With these, it may be seen
that the hopping part of the Hamiltonian

H, =t h tht. [btt(l bit.bt)+ (1 b~tb~ )bt,].
i,j&

po-exp X k; b;tbj IN). (2)

In linear spin-wave theory (i.e., treating the b's as ideal
bosons) po gives results identical to those obtained from
the leading term of the Holstein-Primakoff transforma-
tion. In the same framework, the Hamiltonian (1) can
be rewritten as

satisfies all the constraints on the motion of a hole. In
particular, it commutes with the number of doubly occu-
pied sites, g; h;th;b;tb;, i.e., it conserves the constraint of
no double occupancy, h;b; =0. It also properly describes
the alteration of spin configurations as the hole moves.
The Heisenberg Hamiltonian HJ may similarly be writ-
ten in terms of b*s and projection operators 1 —h;th;.

A good ground-state wave function for QAFM's,
which includes the zero-point spin deviations, is the Bo-
golyubov wave function

Ht =,l2 g hghg —q[ttq(ttqyp —q+ vqytr) +a —q(vqyQ —q+ ttqyg)],
Ez

N' )cq
(3)
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where

up
= [ —,

' [(1 —y$)
' '+1]]' ',

v k
= —sgn(yi, ) [—,

' [(1—y)) '/' —1]I '/'.

(4a)

He«, &a= vk/uz and yt=psexp(ik b)/z, where z is the coordination number. The a's are spin-wave operators,
bg =upas+ vga —k, with dispersion ro&

=Jz(1 —
yq)

' 2.

With (3), a self-consistent diagrammatic approach can be used to evaluate the self-energy of a hole. The leading
term in such a series is given by the self-consistent Born approximation

G(k, co) = [ro+i0 Z(—k, ro)] (6)

is the hole Green's function. Here, the limit T=O has
been adopted. By inspection, G (k, ro) G(k+ Q, co),
where Q =(z, . . . , z); i.e., the dispersion along Q is that
for next-nearest-neighbor hopping, as it should be if
there is a sublattice magnetization.

For J))t, perturbation theory has been used by Huse
and Elser. ' In this case, Eqs. (5) and (6) can be solved
analytically. Most of the spectral weight, 1 —O(t /J ),
appears in the "quasiparticle" (i.e., zero spin-wave) part
of G(k, co) which has a dispersion

z (uqyk —q+ vqyk)
17J

N q GOq

The bandwidth of the hole is thus small, O(t /J). For
frequencies co& ek, the hole spectral function A(k, ro)
= —ImG(k, ro) also shows multiple-spin-wave in-

coherent excitations of weight O(t /J2) (see Fig. 1).
The limit J&(t is more interesting and relevant to ex-

periments. Unfortunately, it requires a numerical solu-
tion of Eqs. (5) and (6). But the general nature of the
solution of Eqs. (5) and (6) is well known and has been
obtained many times in, for example, electron-phonon

z
Z(k, ro) = g(uqyk —q+vqyk) 2G(k q, ~ ruq),

N q

where

(5)

J-0+ J =0.1

problems. " At any given k, there is in general a rela-
tively narrow "quasiparticle" peak and a broad, in-
coherent, multiple-spin-wave background extending to
the full free-electron bandwidth. (Strictly speaking, the
narrow peak is not a quasiparticle since, except at the
AFM zone boundary, it has a width due to scattering
with spin waves. This width increases away from
k=Q/2. )

For purpose of illustration, we have evaluated A (k, ro)
in one dimension and for ease of computation inserted a
hole lifetime of 10 't. [One dimension does have the
special property that the quasiparticle peak acquires a
finite (asymmetric) width even at k Q/2. ] The result-
ing spectral function is shown in Fig. 2, for various J's
and k's, with t 1. First of all, the overall picture of
Fig. 1 persists. For small but finite J and k=rr/2,
A(k, ru) has a well-defined quasiparticle part situated
near the bottom of the free hole band, i.e., near 2t-
[consistent with —(12t)'/2 in 2D4 ], and a broad,
multiple-spin-wave incoherent part. As k is varied away
from x/2, the quasiparticle part follows a dispersion

3
~ 0

3
F
I 2-

J =0.05 J =0.2

I

vr!2

FIG. 1. Sketch of the one-hole excitation spectrum in a
QAFM for k along Q (x, . . . , x). The full line gives the po-
sition of the "quasiparticle" (zero spin-wave) peak, the shaded
area the multiple-spin-wave incoherent excitations.

FIG. 2. Hole spectral function as a function of frequency
for various exchange interactions J and wave vectors k (full
lines, k m/2; dashed lines, k n/4; dotted lines, k 0). The
true spectral function has been convoluted with a Lorent~ian of
half width 10 't. The arrows in the J 0.2 figure me. rk the
position of the "quasiparticle" peak, which follows a dispel..rsion
similar to that sketched in Fig. 1.
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similar to that sketched in Fig. 1, but now with a band-
width of order J. '2 At the same time, the quasiparticle
peak decreases in intensity, while the area under the in-

coherent part grows (the total area is of course conserved
and equal to tr). As J decreases, the scattering becomes
more and more quasielastic and both the quasiparticle
spectral weight and bandwidth decrease, until at J=0+
the whole spectrum is incoherent, extending from 2t—to
2t [—(12t ) 'i2 to (12t ) 'l in 2Dj. We note that our re-
sults for the quasiparticle part are in good agreement
with recent exact diagonalization studies of Huse and
Elser'o which yield the lowest energy at a given k. We
have verified, for J=0+, where computations are not
very complicated, that a spectral function similar to but
more slowly varying than in Fig. 2 is obtained in 2D.

Given (3), the only approximation made is the neglect
of vertex corrections. These are absent for a Cayley tree.
More generally, for t « J, they are always negligible. In
the opposite limit, J=O+, the spectral function A(k, co)
is all incoherent and weakly dependent on k. This is
more so for more ditnensions. The vertex corrections are
then also nearly momentum independent and do not
change the results by more than numerical factors which
themselves are small since vertex corrections can be
shown to be zero if A (k, co) is k independent.

The major approximation is that (3) neglects the vari-
ous hard-core constraints and the distortion in the spins
due to a static hole. Guided by (2), the former can be
included by our writing

e,—P (1 -~„b,t~,') I»
i&j

(8)

The Fourier transform of X;J can, as in 4He, be related to
the susceptibility. " Additionally, in analogy with the
wave function for liquid He with a defect, ' which
changes the structure factor, we can construct basis
states po(") which are modifications of (8); the corre-
sponding distortions of the spin orientation and zero-
point deviations decay asymptotically as power laws

from the position of the hole, n, as may be seen in linear
response by use of spin-wave theory. (Similar wave

functions are being considered by Shraiman and Sig-
gia. ' ) Once the wave functions po and po(") are known,
excited states y; -b;tpo and yt(")-b;1&o(" can be defined,
in analogy with Feynman's work on He and the related
discussion of the motion of a He impurity in He by
McMillan. '3 Following the latter, the resulting com-
plete set of wave functions can be used to calculate ma-
trix elements of Ht, thus generating a Hamiltonian of
the same form as (3) but with renormalized coefficients.
Qualitatively, the results above remain unchanged—quantitatively, the incoherent part is expected to in-
crease somewhat over the results presented.

The hole generates real spin waves while moving and
for J« t, according to Fig. 2, its spectral function is
dominated by such incoherent processes, especially for k

away from Q/2. This leads to disordering of the AFM
when the number of extra spin deviations per spin is —1.
As can be seen from a Lehmann representation in terms
of exact eigenstates with 0, 1, . . . , n spin waves, the aver-

age number of spin waves created can be estimated from
the first moment of the incoherent part of A(k, co) divid-

ed by J. According to our results, Fig. 2, it diverges in

the limit J 0, suggesting that in this limit a hole com-
pletely disorders the AFM. This is consistent with
Nagaoka's theorem, which states that the ground state
for J=O is a saturated ferromagnet (FM)." For small

J, if we start from the latter and note that the AFM is
nothing but a q Q Bose condensate of FM spin flips,
the disordered state can be thought of as a vortex created
by the hole. (Such states appear to be similar to those
postulated in Ref. 14.) In fact, recent exact solutions of
the problem of a hole interacting with multiple spin flips
in a FM yield bound states above the free-hole continu-
um, showing that Neel-type order is pushed away from
the hole to large distances. ' For small J, as more holes
are added, the disordering from every additional hole be-
comes very rapid, since disordering increases with hole
momentum away from Q/2. In addition, at a finite hole
concentration, if we know the Green's function (6), the
holes can be eliminated in Eq. (1), generating additional,
frustrating spin-spin interactions, which compete with
the original AFM Heisenberg interaction.

Given the spectral function, transport properties like
mobility and optical absorption can be directly calculat-
ed. Also given H„ the interaction between two holes can
be easily evaluated, much like McMillan's calculation of
the interaction of two 3He atoms in He. '3 We hope to
present these results in the future using wave functions
(8).
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