
VOLUME 60, NUMBER 26 PHYSICAL REVIEW LETTERS 27 JUNE 1988

Quantum Correlations of Phase in Nondegenerate Parametric Oscillation
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The squeezing spectrum for nondegenerate parametric oscillation above threshold is calculated, in-

cluding phase diffusion. A nonclassical correlation in phase and intensity occurs which is an example of
the Einstein-Podolsky-Rosen paradox, even in fields of large photon number.
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There has been recent interest, both experimental and
theoretical, in the various quantum features displayed by
the fields of an optical nondegenerate parametric oscilla-
tor. The correlation of photon number between the sig-
nal and idler modes is greater than that predicted by
standard classical theory. There is thus violation of a
classical Cauchy-Schwartz inequality involving intensity
correlations. ' Graham~ has suggested that such quan-
tum correlations might remind one of the Einstein-
Podolsky-Rosen (EPR) paradox. 3 Reynaud, Fabre, and
Giacobino4 have recently calculated the spectrum of
fluctuations in the signal and idler intensity difference,
and shown perfect intensity correlation to be possible at
zero frequency for fields transmitted through a single-
ported cavity.

We point out that recent experimental advances5 al-

lowing measurement of fluctuations in field quadrature-
phase amplitudes at noise levels below the quantum limit
now make possible a study of quantum correlations be-
tween the signal and idler phase. We calculate the
transmitted spectrum of fluctuations in the difference be-
tween signal and idler quadrature amplitudes including
the effect of phase diffusion in the signal and idler modes
above threshold. The noise reduction possible for partic-

ular choices of quadrature-phase amplitudes indicates a
perfect correlation of both intensity and phase between
signal and idler. We point out that such a quadrature-
phase-correlation experiment (unlike an intensity-

correlation measurement alone) is a direct example of
the EPR paradox, and the effect occurs both above and
below threshold.

We introduce boson operators a~, aq, and a3 for the

signal, idler, and pump cavity modes, respectively. Us-
ing a generalized P representation, one is able to estab-
lish a correspondence between stochastic amplitudes a;
(and a,t) and mode operators a; (and a;t), respectively,
a,t and a; being independent complex variables. Sto-

where I; =a,ta;, p;=1 (an,t/a;)/2i, and I; and p, are the
steady-state deterministic solutions with p3 =&~ +&)=0.
The resulting equations, after linearization in bl~, bl3,
by+, and bp3, are

Bbl+/Bt =2g (I /tc)bl3+Ff (t),

Bbl,/Bt = ~3($I3 ICISI+,

Bbl /Bt = 2 tel —+F (t), — ——

Bbg+/Bt = —2tcbg++2xb&3+ ft-(t),

Bbp3/Bt = —g (I /tc)bp+ —tc38$3,

By /Bt =f' (t), --
(2)

where I ~
=120 =I and the nonzero noise correlations are

(F4 (t)FE (t') &
= (F (t)F (t') & =4t—cl'b'(-t —t-')

chastic equations describing the oscillator are'

a~ = —tc~a~+ga3aj+(ga3) ' g~(t),

a2 = —tc2a2+ga3ad + (ga3) ' $2(t),

a3 = —tc3a3+ E —ga ~ a2,

and also the equations obtained by interchange of tc;

with x,*, a; with a,t, and g; with g,t. The gt(t) are &
correlated noise forces with zero mean and nonzero
correlation (g~(t)(2(t')) 8(t —t'). E (taken real for
convenience) is the input pump amplitude, and g is the
nonlinear coupling due to the medium. The tc; are the
cavity damping rates and we assume tc =tc~ tc2.

To study the behavior above threshold, we transform
to phase and intensity variables, defined as follows:

bl+ =(Ii —Ii )+ (12 —I)),
813=13 I3, by+—=y&+tt~,
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and

(f' (I-)f' (t')) = —(ff(t)ft-(t')) =(K/I' )s(t t—').

The fluctuations 61~, 813, 8&+, and bp3 are damped
with stable points of zero, while the decoupled signal-
idler difference phase p —undergoes a continuous phase
difl'usion. The solution for p — is immediate. This phase
difl'usion with ([p —(t+ r) —

p —(t)] ) =x
~
r ~/Io was cal-

culated by Graham and Haken, who derived and solved

equivalent operator equations to Eqs. (2). We have now

calculated the full linearized spectrum for the long-time
solutions for the stochastic phase and intensity variables

y —,By+, By3, 81+, and b13.
Stationary spectra for the field transmitted through a

single-port cavity are defined:

S~J(co) =) e' '(a; (t)a, (t+ r))dr,

C;) (co) -„e'"'(a;(t )a, (t + r) )dr,

where a denotes the field external to the cavity. These
are readily calculated in terms of our solutions to (2).
The elements (a, (t)), S12(co), C11(cd), . . . are zero. The
nonzero elements are

S11(co)=S22(co) =21 Lp —
s L2„—,' Cc„+ —

s Ct„
(4)

C12(co) =C(2(cu) =21 Lo+ —,
' L2,+ -'Cp, + -'Ct, .

The solutions are linear combinations of the Lorentzian
components associated with the variables p-, bl-, Spy,
and Bl+, respectively, and are functions of the scaled pa-
rameters co =co/tc, r =x3/tc, and P=E/ET, where ET is
the threshold pump amplitude. The term 21 Lo
= —,

' [(1/81 ) +cd ] ' is the large but narrow Lo-
rentzian due to the phase diffusion of p-. The remain-
ing terms describe the small Auctuations due to the
stable subset, which appear as small but broad com-
ponents in the spectrum. The second term,

1/81 +2
4[(1/81 +2)'+co']

describes fluctuations in the signal-idler intensity dif-
ference. The third term describes Auctuations in the
signal-idler phase sum and simplifies for large I to

4(r '+ co')

(2rP cd') '+ cd'(2+ r) '—
The fourth term, describing the fluctuations in the
signal-idler intensity sum, is positive and will be given
elsewhere. The fluctuations in SI and 8&+ are negative-
in the P representation, implying noise levels below the
vacuum or shot-noise limit.

Consider the quadrature-phase amplitudes defined as
X; (t) e ' a;+e' a; [we abbreviate X; (t) =X~ and
X;"/ (t) Y;]. The average value (X~) of any of the
quadrature amplitudes is zero, because of the phase

diffusion. The large phase fluctuations occur on a long
time scale so that one may envisage measuring an instan-
taneous amplitude X1(t). The intensity undergoes small

stable Auctuations on a much shorter time scale.
Although we cannot say a priori what the projection

X1 will be at a particular time, we note the signal and
idler phases p1 and p2 are correlated, since &1+&2 has
minimal Auctuations. The much smaller intensity Auc-

tuations are also correlated, since 11 12 —has minimal
fluctuations. Thus we expect to infer quadrature-phase
information of the signal by measuring the quadrature
phase of the idler. The quantity 2V(8, p), where

V(8, y) - —,
' ([Xs1(t)—Xf(t)]')

= 1+2 [&a1a1)—cos(8+ p) (a1a 2)],

is a direct measure of the error in our inferring of the
signal amplitude X1(t), given an experimental deter-
mination X)(t) of idler amplitude. V(8, &) is minimum

for 8= —
p; thus a measurement of X2 infers Xt, and Y2

infers —Y1. When V(8,p) =0, there is a perfect corre-
lation between X1(t) and X)(t).

We point out that the ability to infer "at a distance"
either of two noncommuting signal observables, in this
case X1 and Yt for which [Xt,Yt] =2i, with a precision
below the vacuum noise level on the signal is a direct ex-
ample of the EPR paradox. ' The minimum uncertainty
relation for the signal conjugate variables is ~tAYt =1
and determines the vacuum noise level. Thus observa-
tions of V(0,0) &0.5 and V(z/2, —x/2) &0.5 consti-
tutes an EPR experiment.

One may more easily measure experimentallyto the
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FIG. 1. Plot of V(8, —
H, co), the spectrum of fluctuation in

the signal and idler quadrature amplitude difference X& —X2
Solid line, near threshold. E/Er 1.01, x3/x=0. 01, I 10.
Dash-dotted line, well above threshold with a good pump.
E/Er 50, x3/x 0. 1 (I & 10). Dashed line, well above
threshold with excellent pump. E/Er 20, x'3/x 0.01
(I'»0).
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spectrum of fluctuations in the difference X1 —Xf (Caves and Schumaker"),

V( 8&, co) = —,
' „e'"'(Xt(t) —X/(t), Xf(t+ r) X—((t+ r))dr =1+2{5 ~ (co) —cos(8+ &)C~q(co) j.

The expression with the optimal choice 8+& =0 is

V(8, —8, co ) = 1
——,

' L &„——,
' C&„determined only by the

quantum fluctuations SI an—d 8&+. Maximum suppres-
sion of noise in BI (per—fect signal-idler intensity corre-
lation) corresponds to Lq„= l. Maximum noise suppres-
sion in Bp+ (perfect correlation of signal-idler phase)
corresponds to C~, =1. Since in an experimental situa-
tion 8+p is never quite optimal, a truer description of V
above threshold is V(8, p, co) = I+2{S1t(co)—jC1q(co)I.
Here j=(cos26(8+4)) is the average over the jitter in

local oscillator phases. The solution below threshold
(P&1) is

V(8, —8, co) =1 4P/[(1+—P) ' T- co'j,

a simple Lorentzian. '~

Figure 1 shows V for various r, P, and fixed j=0.99.
V 0 is indicative of an EPR correlation. The
coherent-noise spike for P & 1 at co=0 is due to phase
diffusion. Near threshold, both phase (84+) and intensi-

ty (BI ) fluctua—tions are perfectly suppressed and
V(8, —8,co) 0 near co=0. This is true in fact for all
values of r and is also true below threshold as P 1.
For very small r, nearly perfect suppression of phase
fluctuations becomes possible well above threshold at
higher frequencies co-(2rP)'t . Figure 1, dash-dotted
curve, illustrates the appearance of such side peaks. The
central dip is the intensity fluctuation spectrum. Partic-
ularly interesting is the situation, depicted in the dashed
curve, of an excellent pump (r +0). The bandwidth for
perfect intensity-fluctuation reduction extends out to
co-2, and encompasses the frequencies co-(2rP)'t~
showing perfect phase-fluctuation reduction. Thus in

summary we have perfect quantum correlation of
signal-idler phase ctnd intensity for fields of macroscopic

I
photon number.
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