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Are Attractors Relevant to Turbulence?
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The statistical hypothesis underlying the "strange attractor" explanation of fluid turbulence is suspect.
Spatially extended systems generically exhibit long transients that preclude observation of the behavior
governed by the asymptotic invariant measure. Even if the local dynamics is periodic, when it is coupled
into a spatial system complex "turbulent" behavior can exist for times that grow faster than exponential-

ly with increasing system volume. The nature of the attractor is irrelevant to the observed behavior
when such systems are of even moderate size.

PACS numbers: 05.45.+b, 02.50.+s, 47.25.—c, 64.60.Cn

The quarter-century old, and now conventional,
answer to the title is affirmative. After a decade of ac-
tive investigation, a number of experiments have impli-
cated few-dimensional attractors in the production of
complex, unpredictable "turbulent" behavior. ' On the
basis of these and other observations and analyses it has
been concluded that the Lorenz-Ruelle-Takens hy-
pothesis ' of few-dimensional chaos is the proper ex-
planation of the "nature of turbulence. " A more cir-
cumspect summary of the contemporary picture is that
chaos has been detected in "weak" turbulence, but that
turbulence has not been explained in all its manifesta-
tions. The notion that an attractor, or invariant mea-
sure, underlies turbulent behavior dates back to Wiener.
Indeed, it formed the basis statistical Ansatz upon which
his prediction theory and the ergodic theory of dynami-
cal systems has been developed. Nonetheless, the as-
sumption of a governing attractor is a significant statisti-
cal assumption' often left unstated in contemporary
chaotic data analysis.

There are several alternative explanations of tur-
bulence, however, that do not employ the attractive hy-
pothesis: spin-glass relaxation, 6 s spatial noise amplifi-
cation, " and, the subject of this Letter, transients.
There are two broad classes of the latter: nonstationary
and quasistationary transients. Two examples of the first
are chaotic defect motion in lattice dynamical systems'
and dislocations in video feedback. '3 With this type of
transient behavior, the number of "defects" and the size
of turbulent regions decreases with time via defect-defect
annihilation, so that asymptotically the behavior sim-

plifies. The relaxation time for disappearance of the
complex patterns increases at most exponentially with
system size. ' That the initial behavior is in a transient
regime is readily determined from time series from spa-
tial probes. We call this nonstationary decay type-I

transient turbulence (TT-I).
With quasistationary transients, the pattern evolution

looks turbulent, statistical quantities appear to converge
for all practical times, and these indicate very many-
dimensional, unpredictable behavior. After a long time,
however, the system suddenly falls onto a few-dimen-
sional attractor. One cannot tell if the behavior is a
transient, except via an observation interval that extends
into the asymptotic regime. Furthermore, the attractor
can be of such low dimensionality or dynamic simplicity
that it indicates nothing of the structure of the many-
dimensional subspace in which the transients move. We
call this type-II transient turbulence (TT-II).

In an attempt to address problems such as these, we

use a class of prototype spatially extended systems, that
are discrete in space and time. ' ' ' As a simple exam-
ple of complexity arising in a spatially extended system
that is not associated with an attractor, we introduce the
piecewise-linear "dripping handrail" model, '2 given by

r

Xn+1 = Xn2r+1 J- —i

with the local dynamics f(x)=-sx+to(modl). Here
x„'C [0, 1) is the state at the ith site (i =0, . . . , N —1)
at time n, r the radius of the coupling, and N the number
of sites. (We use nearest-neighbor coupling: r =1.)
The local dynamics consists of an increase by roughly to

with each iteration and a sudden decrease in amplitude
above a threshold xq„~=s '(1 —to). This lattice is a
grossly simplified model of a dripping fiuid layer. The
behavior of even an isolated drop is quite complex. ' We
note that x„i1 = f (x„)has been used as a model of sin-

gle neuron dynamics' and of the stirred Belousov-
Zhabotinsky chemical reaction. '

Here we treat the case s ~ 1 in order to study dynam-
ics without local information production. The latter is
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guaranteed by a negative Lyapunov spectrum. The iso-

lated map exhibits a stable period-25 orbit for s =0.91
and r =0.1. A typical evolution of the lattice from a
random initial condition is shown with a space-time dia-

gram in Fig. 1. Detailed investigation of this model indi-

cates that the apparent complexity is due only to infor-

mation mixing in space. ' For this reason we refer to the
behavior as transient spatial chaos

To investigate the relative contribution of transients
and attractors to the observed complexity, the depen-
dence of the average transient length T~ and attractor
period Prv on system size N was estimated from a Monte
Carlo sampling of 10' random initial conditions. The
calculations typically gave &1% error in Tz, Prv was

measured exactly. Figure 2 demonstrates how Tiv scales
with system size. The data are well fitted by

T =T x2N I

with N, =21.5+ 0.5, T1 =149.5 ~ 0.5, and a =3.0
~0.2. The estimated T1 agrees with the average tran-
sient measured directly on an isolated map, Tft„&
=149.8. We have measured N„T1,and a for a range
of other parameter settings. The growth-controlling ex-
ponent a varied from about unity up to 3.2, indicating
that the hyperexponential growth is robust. These stud-
ies also revealed that 90% of the total basin measure is

accounted for by only four or fewer attractors, the num-

ber of observed attractors increases at most linearly and

typically irregularly, and the increase of the average
attractor's period is very slow (linear) compared with

that of transients. We conclude that the dominant be-

havior for large system size is governed not by attractors
with long periods but by extremely long transients.

During the TT-II transient epoch t & Ty there is no
indication of an orbit s ultimate fate. Indeed, most
statistics appear to converge as if there were a well-

defined measure on the transient subspace. To formalize
this, we define the quasistationary measure pT(t, x)d x
as the measure at state x that is invariant during some
epoch T starting at time t Fo.r t ) Tz, it decays to the
invariant measure associated with the attractor. A quan-
titative measure of stationarity is given by the temporal
evolution of the Shannon entropy H"(t) of the k-site
pattern distribution

P(r;x'+', x'+")

dpT(t, x )
lj =1, . . . ,i,i+k+1, . . . , NI

We approximate this by P(s") where s" is a length-k
binary sequence obtained from the spatial pattern
(x'+', x'+', . . . , x'+"): (s");=1, if x „p& x'( 1, i.e., if
water dropped from the site; (s");=0, otherwise. The
temporal evolution of the spatial entropy shows a small
Iluctuation about a constant value during the transient
epoch and then a sudden drop when the system falls into
the (spatially simple) attractor (see Fig. 3).

We have also performed extensive investigations'4 us-

ing spatiotemporal power spectra, spatiotemporal mutual
information or coherence, ' and orbital recurrence. 20

All three analyses provide clear demonstrations of sta-
tionarity for n & Tiv. In the time domain broad-band
spectra and the exponential decay of coherence give
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FIG. 1. Space-time diagram with site amplitudes fx,'l in the

range [0,1] plotted from black to white for a 128-site, spatially

periodic lattice. 128 steps are shown, after i0 iterations of a

random initial pattern.
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FIG. 2. Transient length T& vs system size, N=1, . . . , 47.
T~ varies from a low of Tl =150 to T47 6.17x10 itera-
tions. The solid line shows the hyperexponential fit.

2716



VOLUME 60, NUMBER 26 PHYSICAL REVIEW LETTERS 27 JuNE 1988

2.2

jji jI I„i j i ~i i t&s gi j iil il

I jilt i i~i ||''&I

H(m T)—

0.2 I

m 800

FIG. 3. Decay of the quasistationary measure to the invari-
ant measure as revealed by the time evolution of the spatial en-

tropy H"(t). The k 10 binary-sequence probabilities are es-
timated over T=400 time steps and over the entire lattice of
N=60 sites. The arrow indicates close approach to the uni-
form attractor.

quantitative support to the observation that the transient
behavior is complex and unpredictable. Additionally, the
lack of f ' scaling at low frequencies distinguishes the
behavior from TT-I. In the space domain, spectra show
a correlation length of =N, and a cascadelike decay of
the form k ~ with P = 1.5. A linear decay in the coher-
ence, nonetheless, suggests relatively strong spatial corre-
lation. Finally, orbital recurrence, which is particularly
useful for investigation of many-dimensional state-space
structures, reveals a convergence through a hierarchy of
subspaces during the decay process.

TT-I and TT-II behavior reflect complex intrabasin
and basin separatrix structures. Direct investigation of
the underlying geometry is problematic in spatially ex-
tended systems given their high dimensionality.
Nonetheless, an intrabasin structure organized as a
many-dimensional maze explains much of the observed
phenomena. ' We picture the transient relaxation as a
sequence of transitions through a hierarchy of subbasins
The subbasins are subspaces of a basin separated by
walls through which an orbit cannot pass except at
portals.

For TT-I the state space is organized as a hierarchy of
subbasins of decreasing dimension. Patterns furthest
away from the attractor are the most complex and move
in correspondingly higher-dimensional subbasins. An or-
bit moves from one subbasin to another when two defects
collide. This defines the local spatial conditions for the
portal of some constant spatial length L determined only
by the defect size and the local geometry of the annihila-

tion process. The portal's state-space volume is then
V= c where c is a constant describing the average con-
dition width at each site. Since the number of defects in

a random initial pattern is proportional to N, the total
probability P~ of making the necessary transitions down

through the hierarchy is Pg = c . If we assume ergodi-
city within each subbasin, the TT-I transient time Tz
= Piv

' scales at most exponentially with system size.
Although the average complexity of the patterns is rel-

atively constant during the TT-II transient epoch, they
can make close approaches to uniformity. (See arrow in

Fig. 3.) This suggests that for TT-II the subbasins con-
sist of long tendrils that pass through the neighborhood
of the simple attracting pattern. As if in a maze, the
transient can be relatively close to the attractor at one
time, but move very far away in order to find the correct
path actually to reach the attractor. We assume that the
complexity of the subbasin hierarchy is described by a
direct product of the local basin structure of each site.
The number of subbasins is proportional to N", where y
describes the density of the tendrils. The lack of a local-
ized annihilation mechanism indicates that the condition
for passage through a portal is spatially global, depend-
ing on some fraction of N. The probability p of passing
through a portal is then p=c . The total probability
is then the product of these over the hierarchy. The as-

sumption of ergodicity at each stage of the relaxation
yields a transient length Tv =c "that grows hyperex-
ponentially with system size and depends on the basin's
tendril structure.

To appreciate the physical consequences of TT-II tur-
bulence, consider the 128-site model of Fig. 1. This is a
"small" system in comparison with the number of spa-
tially distributed active modes in fully developed tur-
bulent fluid flow, where the number of active modes is
bounded by the number of dissipation-scale eddies con-
tained in the flow. Nonetheless, if we assume that it is a
physical model with a characteristic (iteration) time of
10 "

s, then an experimenter would have to wait more
than 10 yr to observe the ultimate periodic attractor,
even in this mathematically ideal setting.

The nature of TT-II also leads to several computation
theoretic consequences. First, the hyperexponential
growth in TIv means that transient spatial chaos is, in

principle, unsimulatable on finite-state machines for lat-
a (a —1)tices larger than some size N* = (bN;) t' 'l, where b

is the number of bits used to represent each local state.
Thus, the periodic attractors in the lattice with a=3
cannot be observed by IEEE double-precision simulation
when the lattice contains more than approximately 800
sites. Second, in contrast to TT-I, the identification of
the transient epoch has finite computational complexity
in the probabilistic sense that, lacking prior knowledge of
the asymptotic behavior, one can do no better than to
make observations and wait for the decay.

We believe that the general result on the existence of
dominating, arbitrarily long transients also applies to
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dynamical systems of other architectures, such as non-
linear neural networks, economic systems, evolutionary
models, and generally those with many interacting sub-
systems. There is currently little theory describing tran-
sient behavior in such systems. In very few dimensions,
existence of long transients has been theoretically studied
only near critical points. ' Automated experiments that
mimic the finite-size scaling and that prepare the system
in a specified ensemble of initial configurations appear to
be the main avenues for observation of the rapid growth
in transient epochs and so for detection of transient spa-
tial chaos. Dynamical system methods need not be ig-
nored, however, when TT-II is found. In the case of our
estimating spatiotemporal equations of motion, s for ex-
ample, transients are often desirable in order to increase
the observed support of the dynamic and this, in turn,
improves the estimates.
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