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Diff'usion in Presence of External Anomalous Noise
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We present a theory to study external non-Markovian noise in diffusion processes by using the multi-
state continuous-time random walk. We show that if the external noise is anomalous the eA'ective

Green's function of the walker has no long-time tails. We study the internal fluctuations in presence of
non-Markovian noise.

PACS numbers: 05.40.+j, 02.50.+s

M22(s, s';t ) =82(s, s')exp[ —g, 82(s ",s') t],

M21(s;t) =exp[ —g, 81(s',s)t],

M12(s;t) =exp[ —g, 82(s', s)t].

(lb)

Recently there has been considerable interest in vari-
ous aspects of dynamic disorder such as diffusive trans-

port on a spatially and dynamically disordered lattice, '

diffusion-influenced reactions where the reactivity of the
species fluctuates in time, and external fluctuations in

master equations. ' The starting point of the above
references is a master equation (ME) with dynamically
disordered transition rates. In Refs. 1 and 2 the Liou-
ville master-equation approach has been used; in the
work of Sancho and co-workers, ' on the other hand, the
functional calculus was employed. 's

The continuous-time random-walk (CTRW) theory is

found to be an attractive approach to tackle these prob-
lems. 9'o In this Letter we study a CTRW in presence of
dynamical disorder, generalizing the external noise to a
non-Markovian stochastic process. This situation cannot
be straightforwardly analyzed neither starting from the
Liouville master equation nor by use of functional cal-
culus techniques.

Assuming the noise to be a two-level non-Markovian
process we can represent the situation as a CTRW with

two internal states. " The transition matrix characteriz-
ing the diffusion process in presence of an external non-

Markovian dichotomic noise in the multistate CTRW
theory must be written as

M11(s,s';t)p11(t) M12(s;t)f12(t)

M21(s't)f21(t) M22(s s t)422(t)

(la)
M11(s,s';t) =81(s,s')exp[ +,-81(s",s')t], —

(2)

where Laplace (t u) and Fourier (s k) transforms
have been used [we use the tilde to specify the Laplace
transform of a function; the Fourier transform is charac-

Here

M;;(s, s', t)dt =8;(s,s') exp[ g, 8;(s—",s')t]dt

is the probability that the walker ends its sojourn in s',
after a time between t and t+dt since it arrived in s', by
means of a jump to s when the noise is in the state
i (i =1,2). M;, (s;t) (iej) is the probability that the
walker is still in the site s after a time t since it arrived at
s, with the noise in the level j. f1 (t) dt is the probability
that the noise being at the level j at t =0, it makes a
transition to i at time between t and t+dt, and p;;(t) is
the probability that the noise is still in the level i after a
time t since it arrived at this level.

The structure of the transition matrix is due to the
external character of the noise: Its elements are a prod-
uct of a probability density and a probability; for exam-
ple f12(t) is associated with the noise and M12(s;t) with
the walker for a fixed noise value. Then the elements

y;, (s,s';t) acquire the form of a probability density as is
usual in the multistate CTRW theory. "

In this Letter we assume equal transition probabilities
for the noise: f21(t) =f12(t) =f(t). Then the probabili-
ty that the noise remains fixed in the level i is 1';;(t)
=1 fQ"(t')dt' =y(—t)

In Eq. (lb) we have assumed that for each ftxed value

of the noise the walker is governed by a ME; this is the
consequence of the exponential time dependence
[8;(s,s')exp[ —g, 8;(s",s')t]j for the walker's waiting
time.

General framework. —The formal solution of the
multistate CTRW problem [for translational-invariant
transition matrix y(s s';t ) ] is "'—

P(k, u) =p(u) [I—y(k, u)] 'P(k, t =0),
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terized by the argument (k) of the function]; for exam-

ple,
nal matrix p(u) is

P(k, u) =gjk~ i "'P(s, r)dr
S

(3)
2

y;, (u)= 1 —g y(, (k=O, u) u
I 1

(4)

Here P;(s, t) is the joint probability for the walker to be
at site s and the noise in the state i at time t. The diago- The effective Green s function of the walker, averaged

over the external noise, is

The Laplace and Fourier transform of the matrix Eq. (la) is

f(u+8, (k =O))
, u 8 (k)p( u+8 (k =0)) '

8, (k)q(u+8, (k =O) )

f(u+B)(k =0))

2 2

P(s, t)—= gP (s, t) =2„'Pk '' g p~(u)[I —jr(k, u)]q( 'P((k, t =0)
i 1 ijl 1 j

(5)

where

1 f(u+ —8; (k =0))
j(u+8, (k =O)) =

l

(61 )

f(u) —1
—(r„„„)u,

Q 0

which implies that

f(u+8;(k =0)) —a;o+a;lu,
Q~0

where

a;p=1 —8;(k =0)(t„;„),
a;1= -(r„„„).

(7a)

(7b)

(7c)

(II) f(t) has an infinite first moment (non-Markovian
limit). Then

f(u) —1
—Pu"; 0&) &I,

Q 0
(sa)

The effective Green's function for the walker, in

Fourier-Laplace representation, can be obtained from

Eqs. (5) and (6). Its long-time behavior can be studied

by analysis of the u 0 limit. We consider two

different cases for the waiting-time density of the noise

(r ).
(I) f(t) has finite first moment (r„,;„). Then

l

implying that

f(u+8;(k =0)) —b;p+b;iu,
9 0

~here

bio =1 P[8;(k =0)]",

b, ~
=-P) [8,(k=O)] -'.

(8b)

(Sc)

Note that 8; (k =0)ao as can be seen from Eq. (Ib).
This means that even if the noise is anomalous the
effective random walk has no long-time tails.

The behavior of f(u+8;(k =0)) in the limit u 0 is
linear in u because of the shift of its argument in both
(I) and (II). Then we write, in general,

f(u+8;(k =0)) (p+f()u,
Q~

(10)

Here

where f;p=a;p (b;p) and f;~ =a;1 (b;1) in cases ([) and
(II), respectively.

The egectiUe Green's function —The effec.tive Green's
function of the walker (in the limit u 0) is obtained
with Eq. (9) in expressions (6a) and (6b):

-( „) D(k)
u-oE(k)u+F(k) '

D(k) =[8~(k)+82(k)](f2p 1)(1 f p)1+8(1)k(1+f p)l(1 f2p)+82(k =0)(1+f2p)(1 —flp), (1 la)

E(k) =2[Bi(k) [82(k =0)fl ~+f~o
—1]+82(k)[81(k=0)f2~+f2p —

1]+Bi�

(k)82(k) [fl 1 (f2o —I)+f2' (flo —1)l

+ [81(k =0)+82(k =0)](1 f)pf2p) 81(k =0)82(k =0)(f flp+2fi) lf2o)], (1 lb)

F(k ) =2 [81(k )82 (k =0)(f1 o
—

1 ) +8z(k )8 & (k =0)(f2p
—1 ) +8 ] (k )82(k )(flo

—1 ) (f2p
—

1 )

+Bi(k =0)Bp(k =0)(1 —f|afro)]. (11c)

As initial conditions we have assumed that the stalker s position is known precisely, and that the noise state is in equilib-
rium:

I/2
P(s, t =0) =8, o (12)
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When the waiting time of the noise [f(t)] and the statis-
tics of the transition of the walker [8;(k)] are known, all
terms in Eq. (10) can be found and the calculation of
P(s, t) is reduced to quadratures.

Remark W.
—e have presented a theory to take into

account external non-Markovian noise in diffusion pro-
cesses by means of the multistate CTRW. This ap-
proach allows us to conclude that even if the external
noise has long-time tails the effective Green's function

for the walker will not conduce to anomalous diffusion.
Particular example .—As an example we assume that

the transition probability of a one-step ME becomes a
random function of time because of the presence of an
external noise. We represent the influence of the noise

by adding a random function to the transition probabili-
ty.

For each realization the noise-functional Markovian
ME is

aR(s;l, [g(t )])/Bt = [[exp( —a/as) —i] [qo+q ~&(t )]+[exp(8/Bs) —1]po]R(s;t;[g(t )]), (13a)

where R(s;t;[g(t)]) is a functional of the noise realization [g(t)]. Here g(t) is a two-state Markovian process which
takes values + 6 and has correlation time X

(g(t))«, ) =0; (g(t)g(t'))«, ) =a'exp[ —X
t t t't ]—

(the requirement of positivity of the transition probabili-

ty implies that qo
—

q~d ~ 0).
By setting g(t) =5 and g(t) = —d, in Eq. (13a) we

can obtain the ME which governs the walker's evolution
for each fixed value of the noise. The expressions for
B~(s,s')=8~(s, s') and 82(s, s')—:8-&( ,ss) of Eq. (lb)
(in Fourier representation) are

8~(k) =(qo+q)d)l' +pol

8,(k) =(q, q, t )i "+-poi '".
(i4)

f)p(t) =f21(t) = (X/2) exp[ —(X/2)t],

p ~ ~ (t ) =
p22 (t ) =exp [—(t/2 )t ].

(Is)

The transition matrix is obtained from Eqs. (14) and
(15). If we restore the expression of ttr;J(k, u) in Eq. (5)
the exact effective Green's function of the walker can be
written as

P(s, t) =2„'Vk '[P (k, u)+P (k, u)j-. (i6)

This is in agreement with the results of Ref. 3 where the
effective Green's function is found by averaging over the
realization of the noise:

P(s, t) =(R(s;t;[&(t)]))~&,1. (i7)

The scheme presented in this Letter offers the possibil-
ity to study the influence of external non-Markovian
noise in the internal fluctuations of the system, with use
of a nonexponential (anomalous) waiting-time noise
[case II Eq. (Sa)]. The study of the thermodynamic lim-
it will be published elsewhere. '

Discussion. —This approach can be straightforwardly
generalized to the case of an n-level external noise. The
evolution equation for the efl'ective Green's function can
be studied by generalization of the resolvent-matrix

Using the fact that g(t) is a two-level Markovian noise
characterized by Eq. (13b) we can deduce the functions

fit(t) and p;i(t) of Eq. (la):

(i3b)

t method'; the application of this technique to external
noise is in progress. '5 Also the analysis of local dynami-
cal disorder and simultaneous static and dynamical dis-
order will be subject of further work.
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