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Long-Time Self-Diffusion in Concentrated Colloidal Dispersions

M. Medina-Noyola
Fakultat fu rPhys'ik, Universitiit Konstanz, D-7750 Konstanz, Federal Republic of Germany, and

Departamento de Fisi'ca, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional,
07000 Mexico, D.F., Mexico
(Received 16 November 1987)

A theory of self-diA'usion in concentrated dispersions is presented, in which the eA'ects of hydrodynam-
ic and direct interactions between macroparticles are virtually decoupled. The long-time self-difusion
coefficient D, is written in terms of the radial distribution function of the suspended particles and of
their short-time self-diffusion coefficient D, . The predictions for the volume fraction dependence of D,
in hard-sphere suspensions are in excellent agreement with available experimental results.
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The direct-interaction forces between colloidal parti-
cles in suspension (Coulombic, van der Waals, etc. ) con-
stitute a fundamental relaxation mechanism in these sys-

tems, ' in complete analogy with the role of intermolecu-
lar collisions in simple liquids. Thus, the theoretical
description of the dynamic effects of the direct interac-
tions in colloidal dispersions has paralleled, "to a large
extent, corresponding developments in the theory of sim-

ple fluids. Unfortunately, this analogy breaks down un-

der circumstances which happen to be of enormous prac-
tical interest, namely, when concentrated dispersions of
uncharged colloidal particles are considered. For these

systems, the nonconservative hydrodynamic interactions
constitute another essential feature, ' whose description
requires the solution of a highly nontrivial many-body
hydrodynamic problem. Thus, the fundamental anal-

ysis of the coupled effects of the direct and hydrodynam-
ic interactions between colloidal particles constitutes a
major goal of the current theoretical research on the dy-
namic properties of concentrated dispersions.

In recent theoretical and experimental studies of
self-diffusion phenomena in concentrated dispersions, the
effects of the hydrodynamic interactions have been sin-

gled out by the study of the self-diffusion properties in

the short-time regime, i.e., for times much shorter than

rt, the time one colloidal particle needs to diffuse a mean
separation distance between suspended particles. (Even
these short times, however, should always be much

longer than the typical relaxation time rtt of the
macroparticle's velocity. A simple estimate of rt and rtt

is given by rt=n l~/D and rtt =M/g, where M is the
mass of the particles, n their number concentration,
D =kaT/g their free-diffusion coefficient, and g their
Stokes friction coefficient. Here, T is the temperature,
and ka is Boltzmann's constant. ) For such short times

(t«rt), the dissipative effects of the direct-interaction
forces between the suspended particles are still negligi-

ble, and each macroparticle undergoes diffusive motion

in the essentially static field of its neighbors. This
short-time diffusive motion is characterized by a short-

time self-diffusion coefficient D, , which is found to be
smaller than D as a result of the hydrodynamic interac-
tions. The ratio D, /Do depends on the concentration of
colloidal particles, and it has been measured in suspen-

sions of hard-sphere-like particles as a function of their
volume fraction p=rino3/6 (tr being their hard-sphere
diameter). The dependence of DP/D on p is illustrated
in Fig. 1, where an empirical fit of the experimental data
of Ref. 7 is included. Theoretical results for this quanti-

ty are available, and it is fair to say that their agree-
ment with the experimental observations requires only
quantitative improvements.

In contrast, there is a virtual absence of quantitative
theoretical predictions at arbitrary concentrations re-

garding the true long time self-diffu-sion coefficient D, ,
which describes the Brownian motion of a tracer particle
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FIG. 1. Volume-fraction dependence of the short-time and
long-time self-diA'usion coefficients D, and D, for a suspension
of hard-sphere-like particles. The broken line is an empirical
fit of the experimental data reported in Fig. 3 of Ref. 7,
whereas the points represent the experimental results for D, , as
read from Fig. 4 of the same reference. The solid line is the re-
sult of my theory for DL calculated according to Eq. (6), in

which the Percus- Yevick approximation for g(r) was em-

ployed, and with D, determined from the empirical fit in this
figure.

in the asymptotic regime t»zt. For such long times,
each macroparticle has collided very many times with
the other diff'using particles, and this produces an addi-
tional frictional effect. As a result, D, is found to be
even smaller than D, . This is also illustrated in Fig. 1,
where the results of the experimental measurements of
DL in hard-sphere suspensions, as reported in Ref. 7, are
also exhibited. The main purpose of the work described
in this Letter is to provide the first theoretical interpreta-
tion of these results, and in general, of the intermediate-
and long-time self-diff'usion properties of concentrated
dispersions. This work is an extension of recent work '
on the theory of tracer-diffusion phenomena in suspen-
sions without hydrodynamic interactions.

Let us consider a suspension of identical spherical col-
loidal particles interacting via a pair potential y(r).
[The actual functional form of y(r) is unknown, and de-
pends on the system. It includes short-range steric repul-
sions, van der Waals attractive forces, and possible
Coulombic interactions. Simple functional forms of
vr(r) for each of these forces have been employed in the
literature. ] In self-diffusion experiments, the Brownian
motion of a very small fraction of such particles is
recorded, and each of these tracer particles may be re-
garded as diffusing independently of the others. Thus,
the state of this system may be represented by an equi-
librium ensemble of identical systems each containing
only one tracer particle. Let the state of the system be
defined by the variables V(t) and n(r, t), the tracer's ve-

locity and the local concentration of the other colloidal
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particles at a position r referred to the center of the

tracer, respectively. The fundamental assumption of my

theory is the existence of well sep-arated time scales as

indicated above, i.e., in terms of the short and long times

relative to zt. The Brownian motion of the tracer may
then be described by the following Langevin equation:

Md V (t)/dt

= —(~V(t)+f~(t)+ [Vy(r)]n(r, t)d r, (1)

This equation expresses the total force on the tracer as

the sum of the direct-interaction forces exerted by the
other particles on the tracer (the third term on the
right-hand side), plus the hydrodynamic forces exerted

by the supporting solvent, represented as a dissipative

friction term plus the 8-correlated stochastic force f~(t),
related to the friction coefficient (~ by a fluctuation-

dissipation relation.
The direct-interaction term represents the collisions of

the tracer with the other diffusing particles. It consti-

tutes a nondissipative, purely mechanical coupling be-

tween the velocity of the tracer and the instantaneous lo-

cal concentration n(r, t) At ve.ry short times (t«zt),
n(r, t) does not change appreciably, and this force term
constitutes an essentially static external field on the
tracer. Thus, in the short-time regime (M/( « t«zt)
Eq. (1) describes an ordinary diffusive phenomenon,
which is characterized" by the diffusion coefficient
kaT/g~. Since the definition of the short-time self-

diffusion coefficient given above is precisely that, i.e., the
coefficient describing the diffusive motion of the tracer in

the short-time regime, we must then have that (~ is

given by g =kaT/DP. Let me stress that the present

theory does not attempt to calculate DP, for which well

established theories56 are available. Instead, it attempts
to express D, in terms, among other things, of D, , which

is regarded here as determined from experimental mea-
surements or from independent theoretical calcula-
tions.

Qf course, it is only in the short-time regime where

n(r, t) may be viewed as an essentially static quantity.
For later times, n(r, t) obeys a diffusion equation of the

type

t1n (r, t )/Bt

=V(t) Vn(r, t) —V J(r, t) —V Jfl t(r, t). (2)

The first term on the right-hand side is a streaming term

deriving frotn the fact that the position r in n(r, t) is re-

ferred to the tracer's position, which moves with velocity
V(t) Thus, this is a.n exact mechanical term. The other
two terms represent the diff'usive fluxes, which include a
dissipative [—V. J(r, t)] and a fluctuating [—V
' Jfl t(r, t )] component, related to each other by a fluc-

tuation-dissipation relation.
Equations (1) and (2) are, hence, quite general, and

specific approximations are only required in the defini-
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tion given to J(r, t). For the sake of concreteness, let us

consider the approximation provided by Fick's diffusion

law, according to which

J(r, t) = b—n(r, t)VtL[r;n],

potential at position r, and is, in general, a functional of
the instantaneous local concentration profile n(r, t ).

In recent work, the procedure has been established

which, starting from the linearization of Eqs. (1) and (2)
3

around the equilibrium averages (V(t))'q =0 and

where b is the mobility of the diffusing particles as ob- (n(r, t)) q=ng(r) [where g(r) is the radial distribution

served from the reference frame of the tracer (which has function of the suspended particles], leads, after the

its own mobility). p [r;n(t) l is the local electrochemical elimination of n(r, t), to the following generalized
Langevin equation for the velocity of the tracer:

PE

MdV (t)/dt = —(~V(t)+ f~(t) — A&(t —t')V (t')dt'+ F(t). (4)

In this equation, F(t) is a (colored) random force deriving from the thermal departures of n(r, t) from its radial equi-

librium average ng(r) It c.an be shown that F(t) satisfies a fluctuation-dissipation relation with the time-dependent
friction function Ai, (t), for which a general expression can be written in terms of g(r) and of the Green's function of the
linearized version of Eq. (2). The specific result obtained for Ag(t) from the use of Fick's law [Eq. (3)], under the addi-
tional simplification in which the field of the tracer is ignored in the calculation of n' and of the functional derivative

{Bp[r;n]/Bn(r')],q appearing in the linearization of Eq. (2), may be written as

hg(t) =(k Tn/24m )„~d k{fkh(k)] /S(k)]exp[ —2D, k

In this equation, S(k) =1+nh(k) is the static structure
!

factor of the suspended particles. In the derivation of
this result, an important additional approximation was

employed, namely, the substitution of the relative mobili-

ty b by the sum of the short-time mobility D, /ka T of the
diffusing particles and of the tracer; i.e., b was approxi-
mated by b =2(DP/k&T).

Equations (4) and (S) provide about the simplest
description of the intermediate and long-time self-dif-
fusion properties of a monodisperse suspension in terms
of the static quantity S(k) and of the short-time self-
diffusion coefficient D, . From those equations one can
derive expressions for the relevant self-diffusion proper-
ties (velocity autocorrelation function, mean squared dis-

placement, etc.). In particular, the long-time self-
diffusion coefficient is given by

D =D [1+(n/48m ) d k h (k) ]

The application of these results to specific systems is
rather straightforward, as long as D, is available. For
hard-sphere suspensions the Percus-Yevick approxima-
tion '2 provides a convenient analytic expression for
S(k), whereas D, may be determined from the empirical
fit in Fig. 1. In such a figure I plot the results thus ob-
tained for D, from Eq. (6). Although a more natural
comparison would be to display the ratio D, /D, of the
two experimentally determined self-diffusion coefficients
along with the calculated p-dependent factor in Eq. (6),
it is clear from the comparison in Fig. 1 that the trends
observed in the experimental results for D, are predicted
by the results of my theory, especially at high volume
fractions. Given the simplicity of the theory, and the
fact that it does not involve any adjustable parameter at

(s)

all, one may say that, except at small volume fractions,
there is a remarkable quantitative agreement between

theory and experiment for DL.

The comparison in Fig. 1 for D, is intended to illus-

trate the type of predictions which can be drawn from
my theory, as well as their relevance concerning the in-

terpretation of particular experimental results. Let me
mention, in this respect, that in a real suspension of un-

charged particles it is impossible to get rid entirely of
van der Waals interactions between the particles.
Hence, I have applied Eq. (6) to a hard-sphere plus at-
tractive Yukawa potential, and compared with the exper-
imental data in Fig. l. Although a seemingly perfect fit

of the long-time data can be achieved for reasonable
values of the Yukawa parameters, such an observation is
not particularly relevant, given the current uncertainties
in the experimental results and in the details of the ap-

proximations. More interesting is the fact that refine-
ments in the specific approximations and simplifications
introduced here are certainly possible. For example, the
question concerning the description of the diffusion of
the other particles as observed from the reference frame

of the tracer (which is itself undergoing Brownian
motion) may be given an alternative treatment. 9 I have
found that this also leads to a better quantitative agree-
ment with the experimental data in Fig. 1, especially at
high volume fractions.

The results presented here can also be extended in

several interesting directions. As an example, let us con-
sider the case in which there are more than one (say v)
species of diffusing particles with arbitrary direct in-

teractions. Then the extension of Eq. (6) for the long-
time self-diffusion cofficient D, of a tracer particle of
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species i, reads

D =D ~1+ g [n;D /3(D +D )] d'r[g; (r) —1)
j=l

where D, is the short-time self-diffusion coefficient of a

particle of species j, whose number concentration is nt,
and whose radial distribution function around the tracer
is g;~(r). The experimental measurements needed to test
this result are probably not much more involved than
those employed in Fig. 1, but they are not yet available.
Thus, for the time being let me discuss the physical pic-
ture behind the theoretical scheme introduced in this pa-

per.
The classical concept of Brownian motion" can be

viewed in terms of the random trajectories available to a
Brownian particle (as generated by the Langevin equa-
tion). The statistical properties of these trajectories
differ qualitatively if the particle diffuses freely, or if it is

one of many interacting particles in a suspension; in the
latter case, collisions between particles hinder the motion
of each other, and the effects of such collisions are only

appreciable over times much longer than the "mean col-
lision time" zi. However, in between collisions, the
mechanism of transport is still essentially free diffusion.
In the absence of hydrodynamic interactions, this free
diffusion is characterized by the same diffusion coeffi-

cient, D =kaT/(, as in truly free diffusion. In its sim-

plest version, my theory assumes that when hydrodynam-
ic interactions are present, their effects are established
within a very short time (compared with zt), and that
they only modify the effective friction which the Browni-

an particle feels at any instant during its "free'* diffusion
between collisions. Thus the trajectories available to this
Brownian particle should not differ from those of a
tracer particle in an identical (but idealized) suspension
without hydrodynamic interactions, except that the
diffusion coefficient governing this "free" diffusion is no

longer D, but D, =kBT/( . Within this simplified pic-
ture, many ideas and techniques developed for systems of
interacting Brownian particles without hydrodynamic in-

teractions could be translated essentially without

change, except for the replacement of D by D, . Equa-
tion (6) is a good example of this type of result. Of
course, there may be systems and conditions where this
simple picture of hydrodynamic interactions will not

(7)

L

hold. The comparison in Fig. 1 suggests, however, that
at least for the system we have considered, this is an idea
worth pursuing.
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