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Superconducting Ground State of Noninteracting Particles Obeying Fractional Statistics
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In a previous paper, Kalmeyer and Laughlin argued that the elementary excitations of the original
Anderson resonating-valence-bond model might obey fractional statistics, In this paper, it is shown that
an ideal gas of such particles is a new kind of superconductor.
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In a recent Letter, ' Kalmeyer and I proposed that the
ground state of the frustrated Heisenberg antiferromag-
net in two dimensions and the fractional quantum Hall
state for bosons might be the "same, " in the sense that
the two systems could be adiabatically evolved into one
another without crossing a phase boundary. Whether or
not this is the case is not presently clear. Indeed, the ex-
istence of a spin-liquid state of any spin- —,

' antiferromag-
net in two dimensions has not been demonstrated. How-
ever, the case for a phase boundary's not being crossed is
sufficiently strong that it is appropriate to ask what the
consequences would be if this occurred. Adiabatic evolu-
tion is a particularly useful concept in the study of frac-
tional quantum Hall "matter. " So long as the energy

gap remains intact, the "charge" of its fractionally
charged excitations remains exact and the concomitant
long-range forces between them, their fractional statis-
tics, remain operative. This is why the fractional quan-
tum Hall effect is so stable and reproducible. The per-
sistence of the gap under evolution of the fractional
quantum Hall problem into the magnet problem would
allow us to make exact statements about the magnet
without knowing anything about its Hamiltonian. In
particular, the excitation spectrum of the magnet would

be almost identical to that proposed by Kivelson, Rokh-
sar, and Sethna, and completely within the spirit of the
Anderson resonating-valence-bond idea, ' except for one
crucial detail: Both the chargeless spin- —,

' excitations,
the "spinons, " and the charged spinless excitations, the
"holons, "would obey —,

' fractional statistics. '6 The pur-

pose of this Letter is to point out that this overlooked

property may well account for high-temperature super-
conductivity.

Kalmeyer and I found the magnetic analog of the
charge- —,

' quasiparticle of the fractional quantum Hall
effect to be a spin- —, excitation, well described qualita-
tively as a spin-down electron on site j surrounded by an
otherwise featureless spin liquid. This particle is our ver-
sion of the "spinon. " Like the quasiparticle of the frac-
tional quantum Hall state, it carries a "charge, " that is,
its spin, that is in a deep and fundamental sense fraction-
aL In the limit that the antiferromagnetic interactions
are turned off, the excitation spectrum of the magnet is

purely bosonic. Spin--,' particles occur because these
"elementary" excitations are fractionalized: Half the
boson is deposited in the sample interior and half at the
boundary. It was first pointed out by Halperin6 that, in
the fractional quantum Hall effect, the fractionalization
of the electron charge e into the quasiparticle charge —,

' e
causes the quasiparticle to obey —,

' fractional statics.
That is, each quasiparticle acts as though it were a boson
carrying a magnetic solenoid containing magnetic flu —,

'

xx�b/e.

This fact, deduced by Halperin from the experi-
mentally observed fractional quantum Hall hierarchical
states, was later shown by me7 to follow from the analyt-
ic properties of the quasiparticle wave functions. It
arises physically because the states available to the mul-

tiquasiparticle system must be enumerated differently
from those available to fermions or bosons. In other
words, it comes from counting. Now, it is clear by in-

spection that the preferred nature of this representation
does not care about the existence of a lattice. Thus the
validity of our identification clearly predicts that spinons
obey —, statistics.

Let us now imagine doping this lattice with holes. The
most natural way to do this, in my opinion, is first to
make a spinon, thus fixing the spin on site j, and then re-
move the electron possessing that spin. It is necessary to
make the spinon first because an electron cannot be re-
moved before its spin state is known. If one simply rips
an "up" electron from site j, one tacitly projects the
ground state onto the set of states with the jth spin up,
thus creating an excitation with spin 1. This may be
thought of as a pair of spinons in close proximity. Un-
less the interaction between spinons is attractive and
sufficiently large (Kalmeyer and I found it to be repul-
sive'), to make this "spin wave" will be more expensive
energetically than to make an isolated spinon. Given
that this occurs, the resulting spinless particle, the
"holon, " should also exhibit —,

' fractional statistics be-
cause it is a composite of a spinon and a fermion.

Assume now that we have a gas of such holons obey-
ing fractional statistics. What are its properties expected
to be? This question was addressed to sotne extent by
Arovas et al. , who computed the second virial coefficient
of an ideal gas of particles obeying fractional statistics as
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where zj denotes the position of the jth particle in the
x-y plane expressed as a complex number, v = —,', and e
is a Fermi wave function. This is the singular gauge
transformation first discussed by Wilczek. If we have
an eigenstate e satisfying P~=E%', then @ satisfies

a function of the fraction v. Not surprisingly, they found
a smooth interpolation between the case of fermions,
which acts like a classical gas with repulsive interactions,
and that of bosons, which acts like a classical gas with
attractive interactions. Thus, if we insist on thinking of
these particles as fermions, we must conclude that there
is an enormous attractive force between them. This is

also evident when one considers the low-temperature
properties. Fermions at density p have a large degenera-
cy pressure, and thus a large internal energy, while bo-
sons have neither. Since fractional-statistics particles
are in between, they have, vis a vis -fe-rmions, attractive
forces comparable in scale to the Fermi energy. It is also
important that spinless particles obeying fractional
statistics cannot undergo Bose condensation. They are
not bosons. However, if the fraction is 2, then pairs of
particles are bosons.

There is therefore good reason to suspect that a gas of
particles obeying —,

' statistics might actually be a super-
conductor with a charge-2 order parameter. Let us in-

vestigate this possibility by considering a gas of frac-
tional-statistics particles described by the free-particle
Hamiltonian

N 2

g pj
j 2m

Any eigenstate of this Hamiltonian may be written in the
manner

e(z), . . . , ztv)

P '4 =E4 where

and
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(4)

SHFPj(z) =XjPj(z), (5)

where SHF is the first variation of (S') and X, is a
Lagrange multiplier. The latter has the physical sense of
a partial derivative of the total energy with respect to oc-
cupancy of the jth orbital. Since, in the mean-field
sense, each particle must see a uniform density of mag-
netic solenoids carrying fiux hv/ce, it is reasonable to
guess the solution to be Landau levels, with the magnetic
length ap related to the particle density p by a6
= (2mvp) '. Self-consistency is achieved when the
lowest 1/v Landau levels are filled. Thus, the fractions
v =1, —,', —,', . . . are special cases in which a gap opens up
in the fermionic spectrum.

Let us now test these equations in a case for which we
know the answer, namely v=1, the noninteracting Bose
gas. If the variational procedure describes this limit
correctly, there is good reason to trust its predictions for
v = —,

' . Evaluating the self-consistent field with one Lan-
dau level filled, I obtain

Thus, in the Fermi representation, each particle appears
to carry a magnetic solenoid with it as it moves around
in the sample. The vector potential felt by a particle is
then the sum of the vector potentials generated by all the
other particles. Because particles obeying —,

' statistics
behave like fermions, in the sense that they possess de-
generacy pressure, let us attempt to solve this problem in
the Hartree-Fock approximation: We make a variation-
al wave function that is a single Slater determinant con-
structed of orbitals pj(z) and minimize the expected en-

ergy. The orbitals then obey equations of the form

n n l
k

SHF = —'Ep+( Ep —' )IIO+ g n+ g ( —1)"
nap k l,k, 4 t-~ l

l + l

2k 4(n+1)

with

E = r '[I —e ' ]e "dr0 (7)

in units of the equivalent cyclotron frequency hco,
=2zv(h /m)p, where II„denotes the projector onto the

n th landau level, and a is a regulation parameter,
effectively the inverse of the sample radius. Since PHF
preserves Landau-level index, the state we guessed is a
true variational minimum. Note, however, the logarith-
mic divergence in the Lagrange-multiplier spectrum, im-

plying that the cost to inject either a "particle" or an
"antiparticle" is arbitrarily large. This is absolutely the
correct result. The noninteracting Bose gas has no low-

lying fermionic excitations. The fact that these diver-

gences are logarithmic suggests that the relevant excita-
tions are actually quantum vortices. That this is, in fact,
the case may be seen by our imagining an extra particle
to be placed at the origin and calculating the expected
current density (J(r)). The current-density operator
may be written 3(r) =m '(p+A, ~d+AA), where Aped is
the vector potential in the absence of the extra particle
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and hA is the vector potential generated by a solenoid at
the origin. Since (p+A, !d) =0, the current density must
just be the particle density at r times hA, or a vortex of
magnetic strength hc/e.

The expected energy of the ground state state is N/4
in these units. This is considerably higher than the
correct answer of zero. This discrepancy is due to the
fact that the wave function is forced by its construction
to go to zero when the particles come together. It is thus
more appropriate for the description of real helium than
noninteracting bosons. It should also be noted that this
behavior is actually required of the v= —,

' wave function.
Let us observe finally that the broken symmetry charac-
teristic of a superfluid is not expressly exhibited by the
Hartree-Fock ground state. This is as expected. Is was
shown by Bogoliubov that the broken symmetry of a
Bose gas is absent unless the bosons interact. All that is

required for the symmetry to break is a weak interparti-

cle repulsion and the presence in the "unperturbed" Bose
gas of a collective mode dispersing quadratically with the
mass of the bare particles. In the present case, it is easy
to see that the variational solution possesses a collective
mode that disperses quadratically. Since (S')/X is pro-
portional to the particle density, the pressure is constant,
and thus the bulk modulus is zero. It is a straightfor-
ward matter to calculate the mass of this mode by the
magnetoexciton procedure of Kallin and Halperin. '

My
preliminary results give a value of approximately —,

' the
bare mass. The precise value of this mass is not so im-

portant as the fact that it is of order unity. The collec-
tive mode may be thought of both as a density wave and
as a magnetoexciton consisting of a hole in the lowest
Landau level and a particle in the first excited Landau
level, bound together by a logarithmic potential

Let us now turn to the case of interest, v= —,
' . It is so

similar to the v=1 case that there is little to say. As-
suming two Landau levels filled, I obtain

SHF =
~q + —'Ep+( ——'Ep ——')Hp+( —', Ep+ —,", )Il—!

+Z .+g "(-»» ' g-'-' +k-!,k, 4 t-! I 4k 8(n+ I)
1

8(+2) "'

Thus, we again have a true variational solution with vor-
texlike fermionic excitations. Repeating the arguments
for v= 1, I find that the flux quantum to which the vor-

tices correspond is hc/2e, exactly as expected of a
charge-2 superfluid. Once again, a soft collective mode
will mix into the ground state to break the symmetry
when repulsive interactions are introduced. Thus, the
ground state is a superfluid very similar to liquid helium

except that the charge of its order parameter is 2.
While considerable work needs to be done to quantify

this picture, some of its implications may be seen at a
glance. By far the most important is that a normal-
metal state, in the sense of Fermi-liquid theory, does not
exist, just as Anderson suggested. A corollary is that
the occurrence of superconductivity does not have any-
thing to do with self-consistent opening of an energy gap
in the tunneling spectrum, as occurs in the BCS theory.
Indeed, I find that tunneling cannot even be understood
outside the context of the creation of spinons by the tun-

neling event. It should be noted that this is also con-
sistent with Anderson's views. " A critical prediction is
that an energy gap must occur in the spin-wave spec-
trum, the spin analog of the collective mode' of the
fractional quantum Hall state. This is because the pres-
ence or absence of this gap is precisely the difference be-
tween the disordered and ordered states.

In summary, it is possible that high-T, superconduc-
tivity can be accounted for by the following simple idea:
The force mediated by the spins of the Mott insulator is

I not an attractive potential, but rather an attractive vec-
tor potential.
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