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Transition from Metallic to Covalent Structures in Silicon Clusters
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The structural properties of silicon clusters are examined to determine at what size clusters with co-
valentlike open structures become energetically more stable than those with metalliclike close-packed
structures. By calculation of the total energy of diamond and face-centered cubic fragments as a func-
tion of the number of atoms, an estimate of the "critical" cluster size is made. The estimate is that for
clusters of less than about 50 atoms, metallic structures are favored over covalent structures, with the in-

equality reversed for more than 50 atoms. This result agrees well with recent observations on the rela-
tive stability of Si„+.

PACS numbers: 71.45.Nt, 33.10.Cs, 61.50.Lt

Suppose we imagine building up an infinite crystal by
adding one atom at a time. Small crystalline fragments
could have a different, ground-state structure, or bonding
configuration, from that of the bulk crystal of the same
material. For example, in the case of a material like sil-
icon, the most stable structures of small fragments or
clusters of less than ten atoms are clearly of a metallic
nature, at least from theoretical studies. ' 6 However,
the bulk crystal of silicon is clearly covalent. Thus, it
would seem that at some point with increasing cluster
size a "first-order" transition must occur from clusters
with a metalliclike structure to those of a covalentlike
structure. Of course, there is no reason to believe that
this transition need be abrupt; however, it is clear that
some sort of crossover behavior should occur and that
this transition is of fundamental interest in the under-
standing of the progression from atomic to solid-state
physics.

Crude estimates have been made for the cluster size at
which this structural transition occurs, and they are
quite disparate. One estimate' based upon pseudopoten-
tial-local-density techniques for small clusters, i.e., ten
atoms or less, has yielded an estimate of over 4000 atoms
as the critical cluster size. Another estimate has been
obtained from empirical valence force-field calcula-
tions '3 and yields a cluster size closer to 200-300
atoms. The two estimates may differ because of the
rather different approximations involved. In the pseudo-
potential case, the estimate is based on a rather severe
extrapolation from ten atoms to thousands of atoms;
however, the validity of the calculation for accurate
structural energies for small clusters is not questioned.
The classical valence force-field approach treats much
larger clusters, but the accuracy of this approach is not
so great as the pseudopotential method.

Here I intend to make a comparison by considering a
method which allows us to treat much larger clusters at
small cost in accuracy. ' This approach combines a sum
of eigenvalues from a single-particle Schrodinger equa-

tion with a classical valence force field. " '5 The gen-
eral form of this expression is given as

E([R;]) =g;E; +E2B+E3B+Ug; (qo —
q; ) ',

where
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—8o), 0' ~ 8;,k & 180'.
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The first term in Eq. (1) is a sum over the eigenvalues
obtained from semiempirical pseudopotentials and a
Gaussian basis as outlined elsewhere. ' ' The second
term, E2tt, is a two-body interaction. This term contains
the parameters Ao, P, and Ro which are fitted to the sil-
icon dimer with Eq. (1), i.e., e2ts(R)+P;E; where R is
the interatomic distance. By construction, the experi-
mental values of the binding energy, bond length, and vi-
brational frequency for the silicon dimer will be exactly
reproduced (see Ref. 1). The three-body term, E3tt, is
similar to one used elsewhere. s

8;ik is the angle formed
by vectors from atom i to the nearest-neighbor atoms j
and k (I cut this term off for distances greater than 10%
of the crystalline bond length). Bp and 8o are deter-
mined from the trimer and larger clusters; effectively
these parameters are fitted to reproduce more rigorous
calculations' for small n This term. is not allowed to
grow without bound as the cluster size increases. E3tt is
saturated so that each term is less than some maximum
value, i.e., Bocos(8~k 80) (Eb,„d where the bond ener-

gy is taken to be Eb,„d = —2.5 eV. Finally, with respect
to Eq. (1), we have a term which accounts for the lack of
a self-consistent solution. U is adjusted so that the sil-
icon trimer dissociates properly in terms of the total en-
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ergies known for the mononer and the dimer. qo is taken
as 4 to suppress ionic configurations. The values for the
various parameters in Eq. (1) are summarized in Table
I.

This procedure can be compared with several classical
models and more sophisticated quantum mechanical re-
sults. ' This form contains quantum mechanical
eFects via the first term in Eq. (1), yet it is far easier to
evaluate than a full self-consistent-field solution of the
electronic structure problem. The number of basis func-
tions which we use is minimal. Typically, eight Gauss-
ians which have the form fl, x,y, zI exp( —Pr ) with two
sets of P's, i.e. , two s- and six p-symmetry Gaussians
with P=0.25 and 1.0, are used' so that for the largest
cluster considered here, the matrix size was on the order
of 400x400. The chief deficiency of this method com-
pared with a fully self-consistent solution is its failure to
account for charge transfer properly and the need to
parametrize significant interactions. Compared with

other tight-binding models or linear combination of
atomiclike orbitals (LCAO) methods, it has the advan-

tage of not employing bond counting terms, ' nor do we

have to scale matrix elements as we calculate directly the
required matrix elements. " With respect to valence
force-field descriptions, we have the advantage of includ-

ing some quantum eFects, e.g. , hybridization and coordi-
nation eFects, which are difficult to include with classical
valence force fields. Most notably those classical ap-
proaches which fail to account for incomplete coordina-
tion have been unreliable for the structural energies of
clusters and interstitial defects. 5

In determining the structural properties of Si„, I ad-

justed the parameters in Table I to fit the pseudopoten-
tial-local-density calculation of Tomanek and Schliiter. '

A comparison is given in Fig. l. Over all the agreement
is quite good; however, notable disagreements occur at
n=2 and to a lesser extent at n=8. My dimer is fitted
to experiment; the pseudopotential calculation is not.
Another point to emphasize is the excellent agreement of
my semiempirical calculation of the energy of the n=6
and 10 structures both for the lowest-energy structures
(which are metalliclike) and for the diamond-structure
fragments corresponding to a sixfold ring and an open
cage structure. ' As I intend to compare the diamond
fragments with metallic structures, it is important to ver-

ify that I obtain structural energies in regimes which we

TABLE I. Parameters for evaluation of the total energy via

Eq. (1); also see Ref. 14.
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FIG. 1. Binding energy in electronvolts of silicon clusters as
a function of cluster size. The curve labeled "diamond frag-
ments" are for clusters which correspond to fragments of the
diamond crystal. Results from two calculations are indicated.
Open circles are from the present work (LCAO) and filled cir-
cles are from Ref. l (LDA).
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know to be correct.
My estimate of the structural diFerences between the

diamond and close-packed structures is performed for
n ~ by consideration of fcc fragments and diamond
fragments and by calculation of the structural energy for
large clusters, i.e., large being on the order of =40
atoms. I then fit a functional behavior of the form

E(n)/n =Eb(1 —a/n ' b/n )—,

where Eb =E(n)/n in the limit n~ oe, i.e., the binding

energy for the solid state. Eb(dia) and Eb(fcc) are fixed

by experiment'7 and theory, 's respectively. I fixed the
parameters (a,b) for both the diamond and fcc frag-
ments by fitting to the structural energies as a function
of n (a,b). may be interpreted as decreasing the binding

energy of the solid by the creation of surface and edge
atoms. Initially for small n, the bulk binding energy is
expected to be dramatically reduced and by diFerent
amounts for the two types of structures. Metallic struc-
tures with their greater coordination are able to support
more readily the presence of surfaces, whereas open
structures such as the diamond structure are not. My
extrapolation of E(n)/n is very similar to the work of
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FIG. 2. Binding energy of large silicon clusters as a function
of size. The open circles correspond to fragments of a diamond

crystal; the filled circles correspond to fragments of an fcc crys-
tal. The solid curves are after Eq. (2); see text.
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FIG. 3. Crystal fragment of the fcc lattice consisting of 30
Si atoms.

FIG. 4. Crystal fragment of a diamond lattice consisting of
35 Si atoms.

Tomanek and Schliiter. ' However, they have not includ-
ed a term corresponding to "edge" atoms in their limit-
ing case. The omission of this term and the implicit as-
sumption of a large n leads to an estimate of the critical
value of n„ i.e., Ed;, (n, ) =Er„(n, ), of n, =4000 atoms,
a value which seems intuitively too large. Second, the
procedure they use for determining the parameters
a(dia) and a(fcc) is to consider only the structures at
n= 10 for the diamond and fcc fragments and to assume
that no bulklike contributions exist for the total energy.

I present the structural energy as a function of n for
diamond and fcc fragments in Fig. 2. The structures I
used for the diamond fragments come from the work of
Saito, Qhnishi, and Sugano. They assumed perfect sp'
bonding and determined the optimal structure for dia-
mond fragments via a valence force-field calculation.
While I do not feel that this procedure is accurate in

terms of comparing different types of structural config-
urations, I feel that for the restricted set of diamondlike
structures it is reliable. Saito, Ohnishi, and Sugano do
not give structures for n & 20 so here I have simply taken
diamond fragments formed by taking nearest-
neighboring shells; e.g. , if we include fifth-nearest neigh-
bors to a Si atom in the diamond lattice, this would gen-
erate a cluster of 29 atoms. For the close-packed struc-
tures, I have taken an fcc fragment of ten atoms and
considered symmetric structures built up from this core.
In Figs. 3 and 4 are displayed typical fragments for fcc
and diamond structures which I considered.

From Fig. 2, the crossover point at which diamond and
fcc silicon fragments are comparable in energy is about
40-50 atoms. Clearly, this is only an estimate. I have
not fully optimized the structure in the fcc or diamond
fragments. However, I emphasize several points here.
First, the diamond fragments are expected to have
greater relaxation, or reconstruction energies, than the
fcc clusters. This effect would tend to push the crossover
point to lower values of n. Second, in Eq. (2) I fixed Eb
from a knowledge of the bulk Si energies. However, if
Eb is allowed to be determined by an extrapolation from
the cluster energies for n & 40, reasonable values are ob-

tained for Eb, i.e., within ~10% of the known values.
Third, by consideration of regular polyhedra, the "edge"
sites of the cluster all have similar symmetry. This miti-
gates variations with increasing cluster size in my extra-
polation. Finally, even if I have not achieved a highly
accurate energy for the fcc and diamond fragments, I do
not believe that my estimate would be off by more than a
few tenths of an electronvolt, which would bracket the
crossover point between 20 and 100 atoms. Thus, I find
a much lower transition point than what I believe are
less reliable estimates.

One can also compare to the recent experimental work
of Smalley and co-workers' which lends support to my
estimate. Smalley and co-workers find for clusters of
Si„undergoing reaction with NH3 that dramatic oscil-
lations in reactivity occur with n. They observe that for
clusters above n =47 the oscillations subsided and a slow
monotonic increase in activity occurs. Phillips has sug-
gested that the periodicity can be explained by a cylin-
drical morphology for n ~47. I have not examined
charged clusters, but for neutral clusters I find that cy-
lindrical structures can be competitive with metallic
structures, at least for n ~ 24, supporting Phillip's mod-
el. Moreover, the lack of oscillations for n ~ 47 is cer-
tainly suggestive of a morphology change occurring near
n =50, which is consistent with this work.
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