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The kinetics of spinodal decomposition has been studied by a Monte Carlo renormalization-group
method. Using the standard blocking transformation, we numerically renormalize the evolving
configurations during phase separation of a two-dimensional kinetic Ising ferromagnet with spin-
exchange dynamics. We find that, as the scaling regime is approached, the domain size R grows in time
t as R~1t", where we obtain n =0.338 + 0.008. This is consistent with the classical result of Lifshitz and

Slyozov for Ostwald ripening, namely n= 5.

PACS numbers: 64.60.My, 05.50.+q, 64.60.Ak

Spinodal decomposition, the dynamics of the growth
of order from an unstable state during a first-order phase
transition, is a problem of long-lasting interest and im-
portance.! One prepares a system by rapidly quenching
it from a high-temperature disordered state to a temper-
ature well below its critical temperature 7.. A long-
wavelength instability creates a morphology of intercon-
nected interpenetrating domains of ordered phases (see
Fig. 1). These domains grow as time goes on. Experi-
ments and computer simulations indicate that, for late
times, domain growth often involves a time-dependent
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FIG. 1. Configurations on left for N=256% system at
t=160000 Monte Carlo steps as it is renormalized. Config-
urations on right for N =1282 system at ¢ =20000 Monte Car-
lo steps as it is renormalized. Note the similarity of the
configurations as they are renormalized with this choice of the
time rescaling factor (n =5 ).

length, the average domain size R(¢), to which scale all
spatial dependences.! For example, the order-parameter
correlation function g(r,z) as a function of spatial posi-
tion r and time ¢ often satisfies g(r,z) = G(r/R(t)), for
late times. Furthermore, R(z) often satisfies a power-
law form, R(¢) —t", where n is the growth exponent. It
is generally believed that n and the shape function G are
two features of the kinetics of domain growth in first-
order transitions which characterize a universality class.
At the present time, the nature of scaling and the growth
law for spinodal decomposition (domain growth with a
conserved scalar order parameter, e.g., phase separation
in binary alloys) are controversial. In this Letter, we
present a Monte Carlo renormalization-group study of
spinodal decomposition. This addresses the nature of
growth and scaling from first principles.

The Monte Carlo renormalization-group approach was
introduced by Ma.? It was developed and extended by
Swendsen and others,?> who applied it to second-order
phase transitions. It has since been applied to the study
of other problems, including critical slowing down* and
the dynamics of an order-disorder transition.’> The
method, which we shall discuss and extend below, in-
volves the matching of correlation functions on different
sized lattices at different levels of renormalization, using
the conventional Wilson-type blocking transformation.

The nature of scaling in spinodal decomposition is not
well understood. Recently, a number of interesting is-
sues have been raised by Mazenko and co-workers.$
They have invented a novel renormalization group for
this problem which studies the behavior of small subsys-
tems embedded in a larger lattice at different tempera-
tures. Monte Carlo simulations are then used in con-
junction with results for the thermal correlation length
E(T) to determine the growth law in the scaling regime.
They predict a logarithmic growth law,®*R(¢) ~Int, for
the kinetic Ising model of spinodal decomposition, and
R(t) ~1t " for the corresponding Langevin model (which
is often called model B).®® While it has been thought
that both these models would describe the same phenom-
ena (at least over long length scales and long times'),
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the implication of Mazenko and Valls’s results is that the
two models could belong to different universality classes.

These results are controversial, because the classical
theory of Lifshitz and Slyozov for Ostwald ripening dur-
ing the late stages of nucleation and growth,” a closely
related problem, gives n= 3. Recently, several groups
have studied this issue. In a Monte Carlo study of the
kinetic Ising model, Huse® obtained n =0.29 +0.04, by
extrapolating his results for finite domain size with a
Gibbs-Thomson-type® form for n. He suggested that,
like all local thermodynamic quantities on domains of
finite size, n should be modified by dependence on the lo-
cal curvature 1/R of a domain of finite size, i.e.,
n(R— »)=n(R)+C/R, where C is a constant. In
neutron scattering work on Mn-Cu, Gaulin, Spooner,
and Morii'® see agreement with Lifshitz-Slyozov behav-
ior (using Huse’s form for n). Amar, Sullivan, and
Mountain'' obtained n=0.330£0.005 in an extensive
and careful Monte Carlo study. Finite-size scaling done
by Vifials and Jasnow'? also appears to be consistent
with n=1%. For Langevin models, recent work'? by
Oono and Puri, Rodgers, Elder, and Desai, and Gawlin-
ski, Vifials, and Gunton finds n = & .

Nevertheless, while this work®'!~!3 addresses some as-
pects of scaling, it does not do so from first principles, as
Ref. 6 attempts to do. This situation underscores the
need for a more extensive study, which directly addresses
scaling and the nature of the renormalization group for
spinodal decomposition.

In this Letter, we apply the standard Monte Carlo
block-spin-transformation renormalization group to spi-
nodal decomposition for the first time. We study the di-
mension d =2 kinetic Ising model with a conserved order
parameter. Our result for the growth law, n=0.338
=+ 0.008, is consistent with the classical result of Lifshitz
and Slyozov, namely n=3. However we do observe
strong transients, which can give an effective exponent of
n= 1 for analysis over a limited time regime.

Spinodal decomposition involves at least two length
scales: the domain size and the width w of the interface.
As the domains get larger, w/R tends to zero, and cor-
rections to scaling due to w become negligible. The
renormalization-group transformation iterates away the
small length scale w. This can be seen in Fig. 1, and has
been discussed elsewhere.® In this sense, the evolving
system approaches a zero-temperature fixed point, since
the nonzero width of w is essentially due to thermal fluc-
tuations which roughen the interface, i.e., w ~&.

The Hamiltonian of the two-dimensional ferromagnet-
ic Ising model is H=—JXo;0;, where J is the in-
teraction constant, the sums run over distinct nearest-
neighbor pairs, and the N spins take on values of
o; =1 1. After a quench from an infinite temperature
to T =009T,, the system evolves by Kawasaki spin-
exchange dynamics. At this temperature, the interface is
significantly rough, although the system is still far from
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the critical region. We note that it is natural to expect
that the Ising model and the Langevin model would be
most similar at these temperatures where the domain
walls are rather diffuse. The simulations were performed
on a Cray model X-MP with a multispin-coding algo-
rithm similar to those described in the literature.'* We
studied lattices of sizes N =256% and 1282 Results have
been averaged over 128 runs for the smaller lattice over
60000 Monte Carlo steps. On the larger lattice, results
are averaged over at least 64 runs out to 280000 Monte
Carlo steps. Two measures of domain size were used.
The inverse perimeter density is defined by R,(t) =2/
(2+E/J), where E is the average energy per spin. Since
this gives a length scale determined from the number of
broken bonds, it measures the domain size explicitly in
terms of &, and is sensitive to short-range effects. 15 The
first zero of the spin-spin correlation function g(r,t)
(along the x,y, and x =y directions of the lattice) '® al-
lows us to define a length R, via g(R.,t)=0. This
length scale is relatively insensitive to short-range fluc-
tuations. We used extrapolations of the form proposed
by Huse, since, even after 280000 Monte Carlo steps,
the domains have only grown to a size of R = 10-20 lat-
tice constants.

Our renormalized lattices were obtained by a major-
ity-rule block-spin transformation of the evolving spin
configurations. The length rescaling factor b was chosen
to be 2. “Ties” were broken by our randomly assigning
block spins the value + 1.7 Since the system is approxi-
mately invariant under a change of length scales given a
corresponding change in time scales, the relationship be-
tween the two rescalings gives the growth law. In princi-
ple, after the irrelevant variables have been iterated
away, the system will be invariant under a renormal-
ization-group transformation. It is expected that, after a
finite number of iterations, contributions from the ir-
relevant variables will be negligible. Then, any quantity
determined after m blockings of N spins should be iden-
tical to those determined after m+1 blockings of Nb?
spins. However, since the time scale in the larger lattice
has been renormalized once more, quantities will be at
different times ¢ and ¢, ie., R(N,m,t)=R(Nb*m
+1,t'). This is our matching criterion. The ratio of
times gives the time rescaling factor from which we ob-
tain the growth exponent, i.e., t /t =b'/".

Before doing the matching, we have simply looked for
the best fits to the renormalized data. The R, data, at all
levels of renormalization down to m =3, are fitted
exceedingly well by R(t) =A+B:'. Fits by the same
form with n=§ are significantly worse; two-parameter
fits by R ~Inz are much worse. The R, data show more
interesting behavior because R, is more sensitive to
short-range correlations than R.. Before renormaliza-
tion, the R, data are fitted better with n=1% than with
n=1 (see Fig. 2). Note that the data are fairly noisy
for m =0. After renormalization, however, the data are
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FIG. 2. R.vst"* ort'” as the configurations are renormal-
ized. Best fits are shown. Lines are identified by the number
of rescalings m.

significantly smoother and are fitted by n= 73 better
than n=%. The implication is that there is strong
short-range transient behavior to which R, is sensitive.
Note that the transient is iterated away by the successive
application of the renormalization-group transformation.
Indeed, short-range diffusion gives n =%, '® although the
long-range Lifshitz-Slyozov mechanism gives n=1%. It
should be noted that the appearance of a strong % tran-
sient was also seen in the work on Langevin models'?;
this similarity indicates that the kinetic Ising model and
the Langevin model of spinodal decomposition may share
a universality class.

Our simply fitting each curve does not necessarily
determine the nature of scaling near the fixed point. To
find n in the scaling regime we do a matching analysis as
described above. We estimate an effective n by deter-
mining the ratio of times on the two lattices which gives
equal domain sizes. Using this n(R), we estimate the
asymptotic exponent by generalizing Huse’s formula,
i.e., by n(R— =) =n(R)+C/R. The data for R, are
shown in Fig. 3. The estimates for n from the first three
levels of matching are 0.328, 0.335, and 0.349. Some-
what surprisingly, R, is such a good measure of length
that all the extrapolated n’s are equal within our statisti-
cal error. Averaging them gives our estimate for the
growth exponent: n=0.338 +0.008, which is in good
agreement with the classical result of §. The error is es-
timated to be 3 standard deviations of the statistics in
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FIG. 3. Results of matching to estimate n with R.. Lines
are identified by level of matching (m:m’), which are the num-
bers of rescalings on the large and small lattice, respectively.
Every fifth datum point is shown to 2500 Monte Carlo steps,
then every twentieth to 9500 time steps, and every seventieth
thereafter. Fits are obtained from the full data set. Error bars
are 3 standard deviations.

the data. We can also see that the renormalization-
group transformation makes the constant C become
smaller, as we would expect. The results for R, are more
sensitive to short-ranged effects (the renormalization
group has to “work harder” to both iterate away the
transient n =4 behavior and cause the amplitudes to
converge): While the results at the third level of match-
ing are consistent with those above, we cannot improve
that estimate for n. We have also assumed n =1, and
found that the R’s at different levels of renormalization
approach each other as the renormalizations are done.'®
To conclude, the results of our Wilson-type Monte
Carlo renormalizaton-group study indicate that the d =2
kinetic Ising model with a conserved order parameter
obeys an asymptotic power law with growth exponent
close to 7 in the scaling regime. We see no evidence for
logarithmic growth. Furthermore, while long transients
involving an effective n = §{ were seen in the R, data,
these were iterated away by the renormalization-group
transformation leaving n= . While more study is
needed— for example, we had to make use of Gibbs-
Thomson-type relations to obtain the asymptotic growth
exponent—it is clear that these results are in agreement
with the classical theory of Lifshitz and Slyozov, as
well as the recent Monte Carlo and Langevin-model
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work.®11-13 " Although this does not demonstrate that the
Langevin model and the kinetic Ising model share the
same universality class, it strongly indicates that this
may be the case.?® In the future, we shall present our re-
sults for the correlation function and studies done at oth-
er temperatures, as well as a more detailed account of
the work reported here. '’
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