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Growing Perfect Qnasicrystals
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We present an approach for aggregating Penrose tiles to form a defect-free, 2D pentagonal quasicrys-
tal tiling. Contrary to conventional wisdom, defect-free quasiperiodic tilings can be constructed by use

of local rules alone. The results provide new insights as to how materials with only short-range atomic
interactions can grow large, nearly perfect quasicrystal grains.
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In this paper, we present a growth algorithm for ag-
gregation of Penrose tiles' to form an infinite, defect-free
perfect Penrose tiling (PPT). Only local (short-range)
matching rules are used to determine how tiles are joined
to a cluster, contradicting the standard lore2 that long-

range interactions are required to grow a PPT. Thus, a
mechanism is suggested by which materials with only

short-range atomic interactions can grow large, nearly

perfect quasicrystal grains.
PPT's can be constructed from fat and skinny rhombi'

(which are analogous to unit cells in a quasicrystal3)
with edges marked with single and double arrows as in

Fig. 1(a). The original Penrose matching rules constrain
adjacent tiles to have matching arrow types and direc-
tions along their shared edge. '4 However, random addi-
tion of tiles at the surface of a cluster fails to produce a
PPT even when Penrose's rules are obeyed. "Defects"
—local-rule or geometric conflicts which deviate from
the perfect quasiperiodic translational order of the PPT
—occur after only a handful of tiles are added. The
alignment of distant tiles is required to avoid defects,
and it was believed that only global (long-range) rules

could ensure such alignment. 6 As a consequence, perfect
quasicrystals have sometimes been viewed as physically
unrealizable, a disappointing conclusion, if it were true,
in view of the unique physical properties which such ma-

terials might have. Structural modeling for the
icosahedral phases has turned towards random aggrega-
tion models, and entropically stabilized random tilings. s

Here, we show that the PPT can be grown by use of
only local rules. The rules are "vertex rules" which con-
strain the tiles sharing a common vertex to be one of the
eight vertex configurations found in a PPT (see Fig. 1).
The constraints include but extend beyond Penrose's
original edge rules. According to the vertex rules, a new

tile can be added to an edge on the surface of a given
cluster only if the configurations formed around each
vertex of the new tile are consistent with at least one of
the eight vertices. A vertex that is not yet completely
surrounded is called a "forced vertex" if, for at least one
of the free edges sharing the vertex, there is only one

way of our adding a tile consistent with the vertex rules.
The tiles determined in such cases are called "forced
tiles. "

To grow a PPT from a seed cluster, two additional
rules must be followed. Rl: If one or more vertices are
forced, randomly choose a forced vertex and add a
forced tile to it Force.d tiles are successively added in

any order until the entire surface of the cluster is
"dead, " consisting only of unforced vertices. As dis-
cussed below, the dead surface forms a convex polygon
(when viewed macroscopically) with at least two 108'
corners. R2: If there are no forced vertices, add a fat tile
(consistent with the vertex rules) to either side of any
108' corner.

The growth procedure has a natural physical interpre-
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FIG. 1. (a) Fat and skinny Penrose (rhombic) tiles marked
with Ammann lines. The edges are marked with double or sin-
gle arrows (Ref. 4). (b) The eight possible vertices in a PPT.
%'e require continuity of the Ammann lines across adjoining
edges which assures that Penrose's edge rules are obeyed. (c)
Segments of two rows in a PPT. Above is a "worm segment"
and below is a generic row [see also Fig. 2(f)l.
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tation for real materials. The vertex rules can be inter-
preted as short-range interactions between atomic clus-
ters that share a vertex. Rl could be approximated if
forced vertices have a much larger sticking coefficient
than unforced vertices. In sufficiently slow, diffusive

growth, atoms would not stick to the surface until they
hit a forced vertex. R2 could result if the sticking
coefficient for the 108' corners is much less than those of
the forced vertices, but much greater than those of the
unforced vertices. Another rule we have explored is R2':
If there are no forced vertices, add a fat or skinny tile
(consistent with the vertex rules) to a randomly chosen
unforced vertex Actu. ally, this rule is sufficient to gen-
erate very large defect-free tilings ( ~ 250 tiles). Howev-

er, a rare combination of random selections leads to de-
fects in the tiling, as discussed below.

We will next outline the proof, the details of which
will be given in a later paper. As a preliminary, it is use-
ful to decorate the tiles with the line segments shown in

Fig. 1. In a PPT, the segments join to form five sets of
infinite, parallel lines, known as Ammann lines, oriented
along each of the pentagonal directions. 39 In each set,
the spacings between lines form a Fibonacci sequence of
long (L) and short (S) intervals. The tiles that intersect
a given Ammann line form a "row." Each tile intersects
one line in each pentagonal direction.

The vertex rules have several features that force a
cluster to grow by the successive addition of rows of tiles.
First, they ensure the continuity of the Ammann lines in

the tiles around any vertex, which at the same time as-
sures the correct alignment of distant tiles. ' When a
forced tile is added to an edge, any Ammann lines in the
cluster that pierce the edge are extended through the
new tile. The same tile may extend existing lines in some
directions at the same time that it initiates new lines in

other directions. Second, these rules ensure that a new

row grows by a sequence of forced moves until it extends
at least to the ends of the adjacent, parallel row.

Suppose row I lies along the surface of a cluster and a
new tile is added to a vertex in the middle of it. Every
Ammann line through the new tile also passes through
row I and is fixed in the cluster, except for the one paral-
lel to row I. The new tile initiates a new Ammann line

and, hence a new row, row II, parallel to row I. On each
side of the new tile is an incomplete vertex where the
new tile and row I join. The tiles that complete the ver-

tex are forced: Row I fixes four of the Ammann lines
that pierce them and the new tile fixes the fifth. When-
ever all five lines are fixed, only one tile choice can fit,
and it is forced by the vertex rules. These tiles produce
further forced vertices where they adjoin row I, etc. , un-

til row II reaches the ends of row I. At those points, the
tiles in row I no longer fix the Ammann lines in four
directions. Further tiles beyond the ends may be forced
in some circumstances (see the discussion of corners
below). The completed row II results in a new set of in-

complete vertices on the boundary. If at least one of
these vertices is forced, the associated forced tiles initiate
a new row, row III, oriented parallel to rows I and II.
The process repeats until a row is reached whose surface
consists only of unforced vertices.

Next, we can show that a dead surface consists of
straight sections joined at corners. In order for the se-
quence of forced moves to stop, every Ammann line must
continue uninterrupted across the cluster, and no new
Ammann lines must be forced beyond the surface. An
unforced tile randomly added to the surface necessarily
initiates a new Ammann line that does not yet appear as
part of the existing cluster. This is not possible unless
the new line does not intersect the surface; that is, the
surface must be parallel to the new Ammann line and
have only "microscopic" fluctuations (i.e., no larger than
S), so that it is "macroscopically" flat. At corners, a flat
surface in one direction ends and a flat surface in a new
direction begins. An unforced tile at the corner can ini-
tiate two Ammann lines, one in each direction.

The configurations of tiles along a dead surface is very
special. At any site along the surface, either a fat or a
skinny tile can be added consistent with the vertex rules.
If a skinny tile is added to a given edge, it initiates a new
Ammann line parallel to the edge and fixes the spacing,
L or S, between that line and the nearest parallel line in

the cluster. This in turn forces a row of tiles along the
new Ammann line. If a fat tile is placed along the same
edge, the opposite spacing is fixed and a different row of
tiles is created along the flat surface. The two rows are
related by a "flip" reflection through a line parallel to
the row. The only difference in the Ammann lines that
pass through the two rows is the position of the new line
parallel to the surface. Lines in the other four directions
pass through the dead surface and, hence, are already
fixed by tiles inside the cluster. The row of tiles that has
these properties is already known, referred to as a "worm
segment" in the literature. ' " A worm segment [Fig.
1(c)) has the unique property that both of its sides have
the same geometric shape and arrow directions.

On a macroscopic scale, dead surfaces form a convex
polygon whose sides lie at the borders of finite worm seg-
ments. A PPT has an infinite number of arbitrarily long,
finite worm segments. '0" A tile added to any side of
the dead surface forces an entire, finite worm row to
grow along it, extending to the corners; it determines
which way the worm is flipped; and it determines a finite
number of additional rows parallel to the worm. Furth-
ermore, it may force tiles at the corner, which, in turn,
may begin to force tiles along the adjoining edge of the
dead surface. Forced tiles continue to be added until a
new dead surface is reached. On average, a cluster
roughly doubles in size from one dead surface to the next
(see Fig. 2). In some cases, the old dead surface lies to-
tally within the new dead surface; in other cases, one or
more edges of the old dead surface remain as part of the
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new dead surface.
The possible dead polygonal surfaces can be cataloged

by our noting how worm segments join to form a closed
surface in a PPT. In order to obtain a dead polygonal
surface, dead surfaces that border the worm segments on
the interior must meet to form "dead corners. " There
are two types of 72' dead corners (related by mirror
symmetry) and two types of 108' dead corners. (Also,
two 108' dead corners can merge to form a 36' dead
corner, an uninteresting, degenerate case.) The only
possible closed polygons with 72' and 108' corners have
either (a) two 72' and two 108' corners; or (b) five
108' corners. The problem of cataloging all dead polyg-
onal surfaces is greatly simplified by the observation that
any dead surface remains dead under the inflation trans-
formations introduced by Penrose. That is, if the tiles
enclosed by a given dead surface are inflated to produce
fewer, larger tiles, the inflated tiles that lie totally within
the original dead surface form a new dead surface of the
same shape. A dead surface can be repeatedly inflated
until the cluster consists of only a small number of tiles.
The observation allows a complete catalog of dead polyg-
onal surfaces to be constructed from an exhaustive
search of clusters containing less than about 50 tiles.

(d)

FIG. 2. A succession of clusters grown from a seed consist-
ing of ten tiles [shaded in (a)]. In (a), forced tiles are added to
the seed according to R 1 until the first dead surface is reached.
In succeeding panels, an unforced tile (black dot) is added to
the dead surface in the preceding panel (heavy line); then,
forced tiles are added until the next dead surface forms.
Panels (c) and (e) illustrate how to add the unforced tiles ac-
cording to rule R2; in (b), (d), and (f), rule R2' is used. We
refer to (d) as the "coffin" shape. In (f), the dead surface is

not quite complete; forced vertices (encircled) remain along
the top left surface. In different panels, tiles are shaded to illus-
trate configurations discussed in the text: the two types of
108 corners are shaded in (b) and (d); a 72' corner is shaded
in (c); a generic row (upper left) and a worm segment (along
the heavy line) are shaded in (f).

To establish the sufficiency of R2, we have also
cataloged the "empires, "' the set of forced tiles follow-
ing a random choice, as a function of dead surface polyg-
onal shape, choice of random edge, and choice of worm
orientation forced by the random choice. The catalog is
simplified by the fact that, if two dead surfaces are simi-
lar (in the strict geometrical sense), then their empires
are similar. In particular, to analyze a large tiling, one
can inflate it many times to produce an arrangement
with just a few tiles that can be easily analyzed.

The catalog shows that almost any choice of tile added
to a dead surface forces tiles out to a larger dead surface
containing a proper Penrose tiling. Thus, growth rule
R2' is almost sufficient to ensure a PPT. The exceptions
are coffin-shaped dead surfaces [see Fig. 2(d)] or sur-
faces obtained by our adding to the coffin shape but leav-
ing its short edge on the surface. If a random choice is
made along the short edge, it can force a worm segment
flipped one way or the other. However, only one choice
can be combined with the rest of the tiles along the
length of coffin to produce a PPT. The correct choice
produces a legal Fibonacci sequence of Ammann lines
parallel to the short edge, such as LSLSLL; the incorrect
choice produces an illegal choice, such as LSLSLS.
With use of R2', the tiling typically contains 25o tiles be-
fore such an error is encountered. [Unforced tiles are
only added when the surface is dead. The probability of
our obtaining an exceptional dead surface ( = —,

' ),
choosing an unforced vertex along the short edge ( & 5 ),
and choosing the wrong unforced tile ( 2 ) combine
roughly to —,', , and the tiling roughly doubles in size
from one dead surface to the next. ] The catalog reveals
that growth rule R2, which forces tiles at the corners
that bound the short edge, guarantees that the wrong
choice is never made. This concludes the outline of the
proof.

An important corollary is that there exists a class of
pointlike defects which are ideal seeds for the growth of
PPT's. If a cluster contains one of these defects, a dead
surface is never obtained, and the tiles are forced
throughout the plane. In terms of our physical analogy,
a quasicrystal grain with one of these defects would al-
ways have sticky regions on its surface which promote
perfect grain growth. The defects are a subclass of ille-
gal Penrose tile arrangements known as "decapods. "'o
One can assign a "charge" to a decapod defect using the
Penrose arrow rules: Consider any closed path around
the decapod running along the tile edges; add + I if the
arrow is along the path and —1 if the arrow is opposite
the path. The net charge about any closed path in a PPT
is zero. A dead surface can have charge 0, ~ 2: (a) Any
dead surface edge has charge zero; (b) all 108' corners
have charge zero; and (c) 72 corners have charge ~ I.
Recall that a dead surface can have at most two 72'
corners. Decapod defects, though, can have charges
ranging from —10 to 10. Thus, all decapod defects with
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charge greater than 2 in absolute value can never be en-
closed by a dead surface. The other decapods have in-

teresting properties that will be detailed in our later pa-
per.

We have constructed a series of computer programs to
test the prescription. The programs successfully produce
undefected tilings with up to 10 tiles, limited only by
central processing unit time. We are presently extending
this analysis to the case of 3D icosahedral quasicrystals.
There exist 3D tiles with many of the properties of the
2D Penrose tiles, including the generalization of Am-
mann lines to Ammann planes. We expect most of the
2D analysis to be valid in 3D, but ensuring the construc-
tion of an infinite undefected tiling depends upon details
involving edges and corners. Already, though, the
present work dispels the myth that it is impossible to
grow perfect quasicrystals by utilization of only short-

range interactions.
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