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We discuss a dynamical transition in the propagation of fronts into an unstable state of a bistable sys-
tem. In one regime, the front leads to a new form of pattern formation, in which a periodic state consist-

ing of kinks and antikinks emerges whose wavelength diverges at the transition with an exponent —, . In

the particular model studied, this periodic state is actually weakly unstable.

PACS numbers: 68.10.La, 03.40.Kf, 47.20.Ky

In the study of spatial pattern formation, we usually
encounter systems for which a spatially homogeneous
state of a system loses stability at a certain value of the
parameters. ' Beyond the threshold, the state of the
system becomes spatially periodic, and one of the central
questions of the field of pattern formation concerns the
selection of the wavelength of the emerging state. Ex-
amples of this behavior occur in crystal growth, 2 ffuid

dynamics, ' and in chemical-reaction diffusion systems. '

In this paper, we report a theoretical study of a
different and surprising new form of pattern formation
which can occur in the bistable systems. We will consid-
er systems whose two absolutely stable states are spatial-
ly homogeneous, so that one intuitively would not expect
them to display any interesting pattern formation. Nev-
ertheless, we will show that fronts propagating into an
unstable state of such a system can dynamically create a
periodic array of kinks. These kinks separate large re-
gions in which the system is essentially in one of the two
stable states, so that the pattern behind the front is rath-
er different from those found in instabilities mentioned
earlier, where the scale of the pattern is set by the insta-
bility wavelength (e.g. , the critical wavelength as deter-
mined by the cell spacing in Rayleigh-Benard convec-
tion). Here, the domains where the system is in one of
the two stable states are quite large, and their sizes
diverge at the dynamical transition. Moreover, as we
shall discuss later, the emerging periodic kink pattern is
not necessarily linearly stable, and as a result its long-
time dynamics will show additional interesting dynamics.

While our results also bear on biophysics' and chem-
ical-wave propagation, we will at the end only discuss
two relevant physical examples: the propagation of
fronts parallel to the long axis of rolls in Rayleigh-
Benard convection, and the dynamics of fronts near the
Freedericksz transition in liquid crystals.

While quite general, our results are most clearly for-
mulated explicitly for an extension of the Fisher-Kol-

mogorov (FK) equation. The latter equation,

iy/8t = l)'y/Bx '+ y

is the prototype equation in the study of front propaga-
tion into unstable states, as it often arises as the dynami-
cal equation for the appropriate slow variables in chemi-
cal waves, ' while its extension to a complex field is the
amplitude equation for the dynamics close to the thresh-
old of various instabilities. '2 Since the diffusive term
8 p/8x is stabilizing, Eq. (1) represents a bistable
system with two spatially homogeneous stable states
p=+ 1. The state p 0 is unstable to long-wavelength
perturbations, however. The propagation of fronts into
this unstable state is well understood. 4 For sufficiently
localized initial conditions p(x, t 0) & 0, fronts develop
for long times into a profile of the form p(x —v t) with
velocity v =2. As the asymptotic dynamics then con-
sists of the uniform motion of a profile connecting the
states p =0 and p 1 [see Fig. 1(a)], we will refer to this
case as a uniformly translating front

For concreteness, we will first study a natural exten
sion of the FK equation,

tl tl' 84
&() (2)8x' Bx4

to which we will refer as the EFK equation. The choice
y&0 is dictated by the physical requirement that the
model be stable at short wavelengths, but otherwise the
fourth-order spatial derivative does not dramatically
alter the qualitative features of the homogeneous states

p = ~ 1 and p =0. Indeed, the p =0 state remains unsta-
ble to long-wavelength perturbations, while the stable
states remain absolutely stable.

In Fig. 1 we show results obtained by our numerically
solving Eq. (2) with the initial condition p(x, t =0)
=O. 1 exp( —x ). A typical front profile for a small
value of y (y=0.03) is shown in Fig. 1(a). The front
has developed into a smooth uniformly translating front
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(c) FIG. 2. (a), (b) Possible qualitative behavior of Redo for

axed Rek. (c) Plot of v* as a function of y, as given by Eq.
(5). Inset: Plot of X as a function of y, as given by Eq. (7).
Data points are shown as circles.
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FIG. 1. Examples of the long-time front profiles for several

values of y. (a) y=0.03. (b) Snapshot of a front for y=1.
(c) Several stages in time of the dynamics of a front for

y =0.3.

which is hardly distinguishable from those familiar from
the FK equation. Figure 1(b) shows a snapshot in

time of a front profile for y= l. Clearly, in that case the
dynamics is very diff'erent. First of all, the profile in the
leading edge does not decay monotonically in space but
rather oscillates about zero. Second, as Fig. 1(c) with

y=0.3 illustrates, the position of the oscillations in the
front region is seen to move to the right somewhat more
slowly than the front; while this happens, the amplitude
of each oscillation grows. Once the extremum of an os-
cillation becomes larges, its size expands and a new

domain where
~ I) ~

is close to 1 starts to form. The ex-
pansion of this domain continues until the next node
slows down and comes to rest in the laboratory frame.
Thus, the effect of the front is to generate a periodic ar-

ray of kinks that separate regions where II is close to 1 or
—1. The dynamics of the front is obviousjy more com-
plicated than a mere translation of the profile. Never-

theless, as we shall discuss, the envelope of the front still

propagates with a constant speed, and hence we will

refer to it as an envelope front.
The existence of a dynamical transition in the EFK

equation had actually been partially anticipated. 7 To
understand this transition, it is useful to rephrase these
arguments in a somewhat more intuitive way.

In the marginal-stability theory of front propagation
into unstable states, ' the front dynamics is analyzed
in the leading edge where p is small enough that the
equation describing its evolution can be linearized. Con-
sider first a profile (I(x,t) in the leading edge of the form
e ' ""with ro(k) given by the dispersion relation of the
linearized equation; since we allow k and ro to be com-
plex, the profile can have oscillations with wave vector
Imk, while its envelope falls off as exp[ —Rekx]. For a
fixed value of Rek, the growth rate Redo as a function of
Imk can have its maximum either at Imk=0 or at
Imk&0, as sketched in Figs. 2(a) and 2(b). During the
initial stages of the evolution of the front, the profile in

the leading edge is, of course, not of the purely exponen-
tial form e"' "". However, if we write p=e " (u com-
plex), the derivative q=u„plays the role of a local k
value at any point on the profile. In this local picture,
there is at each point a "mode" Imq (x, t) whose growth
is most rapid, like in Figs. 2(a) and 2(b). The assump-
tion of the marginal-stability theory is then that this
mode will soon be the most dominant one in that local
region of the profile. In other words, after a while Imq
is locally close to the growth mode corresponding to the
maximum t)Redo/|Ilmk=0 at that particular value of
Req. This initial transient is followed by a slower relax-
ation of the inhomogeneities in q. For localized initial
conditions, this relaxation drives the front speed v to-
wards the marginal stability value v*, i.e., the value at
which the group velocity Red'/dk is equal to the en-
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tI Redo
R d rv

(tl Irnk) k. dk
(4)

velope velocity v =Redo/Rek. Together with the above
condition 8 Redo/8 Imk =Imdco/dk =0, the asymptotic
front speed is thus predicted to be given by

Reo)(k*)
R dry(k) I dro(k)

Rek* dk &.
7 ™

dk

Clearly, with an rv(k) as sketched in Fig. 2(b), the
relevant solution k of Eq. (3) will have a nonzero imag-
inary part. This means, first of all, that the leading edge
of the profile will be oscillating in space. Secondly, it
implies that the front profile can then not be of the uni

formly translating type p(x v*—t) any more. '0 In other
words, for fronts evolving from localized initial condi-
tions, the transition from uniformly translating fronts to
pattern-generating envelope fronts occurs precisely when
the behavior of co(k) near k* bifurcates from that of
Fig. 2(a) to that of Fig. 2(b), i.e., when

as at this point the maximum at Imk =0 changes into a
minimum. Equations (3) and (4) locate the critical pa-
rameter value for the transition.

Let us now apply these ideas. For the FK equation
(1), we have Redo = I+k, —k; (where k, =Rek, k;
=Imk), and so the maximum growth rate is always at
k; =0, as in Fig. 2(a). For the EFK equation, however,

Re =1+k k' y(kz 6k' k +k( ).

Clearly when 6yk„& 0, then the growth rate of Redo as
a function of k; (with k,* fixed) is maximal at nonzero k;
and the situation of Fig. 2(b) applies near the marginal
stability point. From Eq. (3), one finds that this indeed
happens for y & y, =

—,', .
Since y, is a bifurcation point of the marginal stability

equation (3), the functional dependence of the front ve-

locity v* is, in general, different below and above the
transition. For example, for the EFK equation, one
finds7 from (3)

Im(co*/v * —k *).
27K

(6)

v* =2(54y) ' [1+36y—(1 —12y) ] '
y & y = —'

v =2(54y) ' (2+24y —A)(4+2) ', y~ y, = ~'&,

where A—:(7+24y) 'i —3. Figure 2(c) is a plot of v as
a function of y. We have measured the speed of the
fronts in our numerical calculations; for y& —,', , the
speed of the time-dependent fronts was obtained by our
tracing the position x~i2 of the rightmost point where
p(x ~i2, t) = 2, and defining v =x~i2/t for large t. As Fig.
2(c) shows, the agreement of our data (circles) with the
marginal-stability prediction (5) is excellent, both below
and above y„ typically our numerical results agreed with

Eq. (5) to within three significant figures.
We stress that while the existence of the above transi-

tion as well as the front velocity v* can be predicted
along the lines sketched above, the above analysis lacks
the power to describe all aspects of the dynamics that are
intrinsically nonlinear such as the detachment of a node
[where p(x, t) =0] from the front and the resulting
periodic kink generation. However, like in studies of the
Swift-Hohenberg equation, "we observed empirically
in our simulations that no nodes disappeared or were
created in the nonlinear region behind the leading edge,
and this allows us to calculate the wavelength X of the
periodic pattern: In the comoving frame with velocity
v, the "flux of nodes" passing a point in the leading
edge is equal to n 'Im(co —v*k*), i.e., twice the fre-
quency with which the profile oscillates. Behind the
front, where the kinks are at rest in the lab frame, the
flux is 2v*/X. Equating the two then yields

(5)

Sz 2y
3

&/2

2+24y —A

12(y- —,', ) —W
' (7)

As the inset of Fig. 2(c) shows, our data agree well with

this result. An interesting feature is that X is quite large
and diverges as y approaches y, . In fact, since A =4hy
for Ay=y —y, small, one sees from Eq. (7) that X

diverges as (Ay) 3 2. This strong divergence appears
rather remarkable at first sight, since both 1m' and
Imk* in (6) vanish as' (Ay)'i. Nevertheless, for an
m(k) that is a real polynomial in k, a straightforward
expansion of Eq. (6) around the transition point gives

~-'=(6~v,*)-'[a'~„/(ak, )'ek ] k'

In view of the fact that' k;* —(Ay)'~, this expression
confirms that the X-(hy) i power-law divergence is a
general feature of this transition (provided the conserva-
tion of nodes holds).

Two comments regarding our results for the EFK
equation are in order. First of all, in the regime we have
explored, kinks are always so widely separated that the
forces between them and hence the stability of the em-

erging kink pattern can be determined explicitly. ' For
y & —,', one finds' that two kinks attract each other, so
that the periodic kink pattern is unstable to a "pairing"
mode. However, since the attractive force falls off ex-
ponentially with their separation, and since the dynami-
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cally generated spacing of the kinks is always large (see
the inset of Fig. 2), the resulting forces are so small

[(O(e )] that the instability of the periodic kink
pattern plays no role in practice. For y & s, the tail of a
single kink does not decay to ~ 1 monotonically, but
displays small oscillations about this value. ' As a re-

sult, the force f(d) between two kinks a distance d apart
then oscillates in sign like f(d)-cos(ad)e . In this

case, the dynamically generated periodic array of kinks
is in general linearly unstable, and this (exponentially
weak) instability will cause the kinks eventually to lock
into some slightly different quasiperiodic or chaotic pat-
tern associated with the minima of f(d). Again, these
effects are not detectable numerically in the regime we

have explored, ' but the possibility of generating this

type of interesting kink motion deserves further study.
Secondly, although y, =

—,', marks the transition for
fronts whose velocity approaches the marginal stability
value because they evolve from localized initial condi-
tions, the EFK equation also allows other stable front
solutions. As the expression for Rero [following Eq. (4)]
indicates, front profiles with —,

'
yk, & 1 have Imk =0 in

the leading edge, and they are therefore uniformly
translating. Thus, for y& y, both types of solutions ex-
ist, and the transition is only sharp for fronts evolving
from localized initial conditions. '4

Although all the quantitative results presented so far
are special to the EFK, the discussion of the mechanism
itself clearly demonstrates the generality of the transi-
tion. In particular, in almost all spatially bistable sys-
tems there will be corrections to the difl'usive term k in

the dispersion relation due to the coupling of various

fields, and so if these correction terms are large enough,
one may see the pattern-generating fronts. For example,
above the threshold for the Freedericksz transition in

liquid crystals in a magnetic field H, back-flow effects
give rise to a dispersion relation of the form' s

ro=[a1(H)+a2(H)k —a3k ]/([+a4k )

for small distortions around the homogeneous undistort-
ed state. From this it is straightforward to derive that
fronts propagating into this unstable state should indeed
show the dynamical transition at some field H, ; above
the transition, such fronts would then generate a striped
pattern. Unfortunately, in practice this effect may be
difficult to discern from the second transition that takes
place at even larger fields, and at which the Freedericksz
transition becomes a finite-wavelength instability. A
more promising route appears to be to investigate fronts

propagating in the direction parallel to the long roll axis
in Rayleigh-Benard cells. If we assume translational in-

variance in the other direction, such fronts are described
by an amplitude equation of the form ' A, = —eA„„,
+A —

~
A

~
2A. After a rescaling, this corresponds to the

y ~ limit of the complex EFK equation, and the re-
sulting fronts should be kink generating. Since a change
in sign associated with a presence of a kink corresponds
to a reversal of a convection field, we expect that these
fronts create a periodic set of defectlike structures.

We thank V. Croquette for suggestions on experimen-
tal applications.
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