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An order-parameter theory of the crumpling transition in D-dimensional polymerized membranes em-
bedded in d dimensions is developed. Within mean-field theory, we show how self-avoidance modifies
the behavior at the second-order crumpling transition. Fluctuations drive the transition first order to
lowest order in e =4 —D, for d & d, = 219.
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In contrast to linear polymers, surfaces can exhibit a
rich variety of behavior, depending on rigidity, surface
tension, and various microscopic constraints. As collec-
tions of permanently joined particles, "tethered surfaces"
exemplify a particularly simple universality class which

is experimentally realizable in covalently bonded net-

works such as polymerized lipid bilayers, chalcogenide
glasses, and gels. Monte Carlo experiments have

shown that, unlike polymers which are always crumpled,
tethered surfaces exhibit a remarkable finite-temperature
transition into an ordered or stretched phase at high ri-

gidity or low temperature.
In this Letter we propose an order-parameter theory of

the crumpling transition which gives mean-field predic-
tions for the parameters measured in Ref. 6. The model

reduces to shell theory' in a low-temperature flat phase
and leads to a Gaussian crumpled surface at high tem-

peratures. How self-avoidance modifies this second-

order crumpling transition is determined within the Flo-

ry approximation. This approximation should be suffi-

cient for laboratory experiments on flexible membranes,
except for very large surfaces close to the critical point.
To lowest order in e=4 D, we show that cr—itical fluc-

tuations lead to a weakly first-order transition in D-

dimensional membranes for embedding dimensions d
& d, =219.

We focus on the quantity r(x), where x is an internal
D-dimensional vector which labels the particles and r is
an external d-dimensional position vector representing
the embedding of the particles. In the simplest case, the
internal connectivity of the particles corresponds to a D-
dimensional lattice with nearest-neighbor interactions.
A statistical description is developed by coarse graining
of this lattice so that the vector x becomes a continuous
variable which labels a "block" of lattice points.

Symmetries of the microscopic Hamiltonian delimit
the form of the free-energy functional for the coarse-
grained variable r(x). For a uniform network, overall
translational invariance requires that this functional de-

pends on gradients such as the coarse-grained tangent
vectors t, =Br(x)/Bx„a=1, . . . , D. In the crumpled
phase, these tangent vectors scale as t, -l" ', and as v

is generically less than 1, they diminish under scaling. In
the rigid phase, close to the transition t, are still small;
hence an expansion in powers of t, and their derivatives
is justified. In the simplest case of an isotropic net-
work, overall rotational invariance leads to a "Landau-
Ginzburg" expansion

PF[r;(x, )) =„d xl —' tc(8, 8,r;) + —,
' t(8,r;) +u(8, r;Ger;) +v(8, r; B,r;) ]

The last term is a nonlocal excluded-volume term which

represents the effects of self-avoidance at large length
scales. Self-avoiding interactions account for inter-
particle hard-core repulsions which mitigate collapse and
also prevent the manifold from folding through itself to
access unphysical configurations. The local terms repre-
sent elastic free energies: The coefficients t, u, and t: can
be interpreted as harmonic and anharmonic stretching
energies, while the coefficient tc is a measure of bending
rigidity. Upon identifying the tangents t =B,r with a

+ —,
'

b d xd x'8 (r(x) —r(x')) (i —1,2, . . . , d). (1)

!
set of order parameters p„an analogy with the usual
p" theories of critical phenomena becomes apparent.
Given the free energy (1), the probability for a con-
figuration jr(x)} is proportional to the Boltzmann weight
e t', and the partition function is a functional integral
over all surfaces jr(x)I.

At high temperatures we expect a crumpled phase
where t is positive for entropic reasons. At low temper-
atures, however, the microscopic surface tangents tend to
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align in order to minimize the microscopic bending ener-

gy, driving the manifold to form a flat phase described
by a negative value of t .For t & 0, the manifold is stabi-
lized by the anharmonic terms, provided that u & 0 and
v =v+u/D & 0. We anticipate a continuous transition
between these phases when t:a(—T T,—) =0.

As an illustration, we first discuss the mean-field solu-
tion in the absence of self-avoidance using the Ansatz
r(x, ) =(x,e„where the je,l are a set of orthogonal unit
vectors specifying the orientation of the manifold in IRd,

and the x, range from 0 to L. The prefactor g, which
was studied numerically in Ref. 6 for D 2, d 3, is an
order parameter which measures the shrinkage of the
manifold in the flat phase due to undulations, and van-
ishes for t & 0. Minimization of Eq. (1) for t & 0 leads
to (= 2 ( —t/Dv)'t, which shows that the radius of
gyration scales as RG =iL —

~
t

~

't2L when the crurn-

pling transition is approached from below. Fluctuations
within the ordered phase can be studied by the introduc-
tion of in-plane phonon modes u, (a=1, . . . ,D) and
out-of-plane undulations hp (P=D+I, . . . , d) and our
setting

r(x.) =([(x.+u.)e.+hpe~], (2)
where the orthonormal vectors Ie~] are orthogonal to the
[e ]. To leading order in gradients of the u, and h~, the
free energy (1) reduces to a generalization of the defor-
mation energy of a flat plate,

/jF= dDx[ —,
' x(V hp) +pu~j+ 2 Xu$k],

2PF/D = xR)L +tR)L +DvRG L (4)

where the strain matrix is u;~
= —,

'
[r);u~ +.Q~u;+Q;h&Qzh&]

and the elastic constants are p =4ug and k =Svg . This
model could, in principle, be applied to linear polymers
(D=l) with very large rigidities, although (because of
undulation modes) all polymers with short-range interac-
tions eventually crumple as L ~. The d =3, D =2,
version of this low-temperature model was studied in

Ref. 5, where it was shown that the renormalized bend-
ing rigidity grows at large distances and stabilizes the
stretched phase against undulations. Note that the elas-
tic constants in this treatment are predicted to vanish
like (T, —T) near the crumpling transition. Mean-field
theory leads in the usual way to a discontinuity in the
specific heat at t =0 and a tangent-tangent correlation
length g- ~t ~

' close to T, . Above T„RG-L'
while precisely at T„RG-L" with v, =l D/4. A—l-

though the Monte Carlo data on D=2 tethered surfaces
in d=3 dimensions without self-avoidance are not yet
good enough to obtain precise exponents, all measured
quantities in Ref. 6 behave qualitatively as predicted
above. Differences, such as the apparently diverging
specific heat and somewhat larger exponent v, are prob-
ably due to critical fluctuations, which will be discussed
later.

The possibility of laboratory experiments on crumpled
surfaces requires that we also understand self-avoiding
interactions. The Landau expansion (1) allows us to
treat such effects (within mean-field theory) with the
Flory approximation. For a network of size RG, the
Flory estimates for the individual terms of (1) are sum-
marized by

D —4+ bRG
—

dL 2D/D

With these estimates, it is straightforward to show that
self-avoidance is irrelevant for t & 0, where RG—

~
t

~

't L. For t & 0, the anharmonic terms u and v are
asymptotically irrelevant, and balancing of the entropic
and self-avoiding energies leads to RG-t "L" where
co =1/(d+2), and vF =(D+2)/(d+2) is the Flory
exponent for self-avoiding manifolds. At t=0, R-L"'
where v, =(D+4)/(d+4). The behavior of RG near
the crumpling transition for D=2, d=3 is sketched in

Fig. 1.
It is interesting to note that the distinct scaling forms

in the vicinity of t 0(inclu-ding finite-size effects) can
be combined into a single homogeneous function RG
-L"'+(tL~), where +(0) =const, e(x)

~
x

~

— for
~~, y=2(d D)/(d+4), and p —=——,

' and P+= —1/(d+2). The theories in the t &0 and t &0 re-
gimes are very different, so that, in principle, two
different crossover exponents y —and y+ cannot be ruled
out. Within mean-field theory, however, this does not
occur, and we conjecture that it is always true. Note
that the exponents y+ and y —are the inverse of the ex-
ponents w ~ and w2 defined in a related scaling analysis in
Ref. 6.

RG

(
)-1/5 4/5

FIG. 1. Radius of gyration of a polymerized membrane with
linear dimension L as a function of temperature.

Similar homogeneous scaling functions, with the same
exponent y, can be constructed for other variables such
as the free energy and heat capacity. In particular, as
we approach the transition from the crumpled side,
the specific heat per particle scales anomalously, C-t 'L " with a=(d+4)/(d+2) and k=2(d D)/—
(d+2). This result applies only for t & t„-L ~. It
would be interesting if the prediction C-t t5L
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du/dl=eu —K4[ —', v2+6uv+( —",, + —,
' d)u ],

dU/dl=eU —K4[(41+5)v + '2' uv+ —'„' u ],

(Sa)

(Sb)

where K4=1/2n and we have used units such that x =1.
These equations have no stable fixed points for d less
than d, =219, and lead instead to a first-order transition.
Such predictions are not always reliable for e-1 in con-
ventional critical phenomena, ' and so we cannot be cer-
tain of what happens for the interesting case e=2, 1=3.
A weak fluctuation-driven first-order phase transition
certainly cannot be ruled out in the simulations of Ref.
6. For d )d, the exponents at the transition are readily
determined from the recursion relation for t,

dt /dl =2t +K4[ —', u +2 (2d + 1)v]/(1+ t ). (6)

In the limit d ~, exact saddle-point techniques
show an isomorphism to the limit n ee of O(n)
models. In this limit, we find, for example, a continu-

could be observed experimentally in a dilute solution of
tethered surfaces.

A systematic perturbative analysis of self-avoidance
in the crumpled phase has recently been developed.
Upon inclusion of fluctuations, the radius of gyration
takes the form R-t L" with v calculated via an
e =4D —d(2 D) —expansion. Furthermore, since there
is a general scaling form RP-L )t 'f(bt t L't ),
where f(x)-x ( "+D ll' for large x, co and v are not
independent: co = (2D —dv)/e. For v = vF =(D+2)/
(1+2), we recover the Flory result, co =1/(d+2). This
e expansion does not include anharmonic strain energies
close to the transition, which are, however, irrelevant for
t &t„.

Thus far, we have neglected critical fluctuations. As
the crumpling temperature is approached from the flat
phase, self-avoiding effects are always irrelevant for
L ~. A simple application of the Ginzburg criterion
shows that mean-field theory for Eq. (1) breaks down for
t (x/ —t) /8Dv &1. Provided the transition remains
continuous, the analogy with p theory for T & T, sug-
gests that (=RG/L -t~ with a nontrivial P, which can be
calculated perturbatively in e=4 Dand 1—/n=1/d ex-
pansions. We have also just demonstrated that
RG-t t' for T ) T, . Assuming that RG still assumes
the scaling form RG =L"'e(tL ) with a common value
of y for t )0 and t &0, we find v, =(co+Pv)/(co+P).
The relation co=(2D —dv)e then allows v, to be ex-
pressed entirely in terms of v and P. Use of the Flory es-
timate v= —', and the assumption that P decreases with

fluctuations to a typical p value of P = —,
'

gives v, =
s

for D=2, d=3, which is greater than the mean-field Flo-
ry estimate v, = —', displayed in Fig. 1.

Having justified neglecting the self-avoiding term, we

can treat critical fluctuations by an e=4 —D expansion.
To lowest order in e, the recursion relations for u and
v =U+u/D read

ous transition with a specific heat singularity C—
~
t

~

t and a diverging persistence length
g- ~t ~

'l ). In contrast to the case d=3, 5 a D=2
surface is always crumpled in the limit d ee, while a
more-dimensional manifold exhibits a finite-temperature
rigid phase. While this manuscript was in preparation
we learned of interesting work by David and Guitter, "
who solve a model similar to ours, but with infinite bare
elastic constants. These authors show that a finite-
temperature crumpling transition is recovered for D=2
within a 1/d expansion for d & ee. In other related work,
Aronovitz and Lubensky' have studied the singular re-
normalization of v, p, and X in the low-temperature
phase described by (3) to lowest order in e =4 —D.

In summary, we developed a unified theory of regular
tethered networks in d dimensions, encompassing poly-
mers D=l, surfaces D=2, and gels D=3 as special
cases. The theory includes harmonic and anharmonic
stretching energies and bending energies, as well as non-
local self-avoiding interactions. Checking the proposed
scaling forms for singular behavior around the crumpling
transition is an important challenge, both experimentally
and theoretically, for the future.
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