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Fluctuations of Solid Membranes
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The free energy of a D-dimensional elastic solid embedded in a d-dimensional space and subject to an
extrinsic bending energy is defined, and the solid s flat phase studied. An a=4 —D expansion about the
upper critical dimension Duc =4 is performed; exponents characterizing the renormalization of the Lame
coefficients l and p, and the rigidity x, are computed to O(e); and exact equations connecting these ex-
ponents are derived. Near D =4, fluctuations increase the rigidity, and so tend to stabilize the flat phase.
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It has long been known that in thermodynamic equi-
librium, long-chain polymers have a finite persistence
length beyond which they are orientationally decorrelat-
ed. ' One thinks of a polymer in a good solvent as a one-
dimensional chain whose conformations fluctuate in a d-
dimensional space. Recently, a large theoretical effort
has been devoted to the understanding of the statistical
mechanics of D-dimensional surfaces whose conforma-
tions fluctuate in the d-dimensional space IRd. 2 Often, D
is taken to be 2 or d —1. It is now well established that,
like a polymer, a fluid membrane without surface tension
whose energetics are dominated by a curvature energy of
strength (rigidity) tc has a finite, rather than infinite,
persistence length for T) 0. 3 Very difl'erent results,
however, have been recently obtained for the case of
membranes with fixed connectivity, or with internal crys-
talline order.

Nelson and Peliti have analyzed the statistical
mechanics of an almost flat two-dimensional elastic
membrane embedded in three-space, subject to the bend-

ing energy described by Helfrich. They treat the pho-
non modes in a Gaussian approximation and show that,
in a self-consistent theory which assumes finite renortnal-
ization of elastic constants, a phonon-mediated long-
range interaction between capillary waves leads to a re-
normalized rigidity of the form tc(q) -Cq " with ri =1.
They further argue that any positive value of q will sta-
bilize a low-temperature flat phase. Toner has pointed
out that curvature fluctuations renormalize elastic con-
stants downward. s Unless this renortnalization of the
elastic constants of the full nonlinear theory is strong
enough to reduce tl from 1 to 0, one expects a flat phase
to exist at sufficiently low, but finite, temperature.

This conclusion is reinforced in a recent investigation

by David and Guitter of a two-dimensional elastic solid
with rigidity x and infinite elastic constants, which is em-
bedded in IR . They show in a I/d expansion that this
unstretchable membrane displays a finite-K crumpling
transition between a flat phase with a Hausdorff dimen-
sion of two and a crumpled phase with infinite Hausdorff
dimension. A crumpling transition, in a model with
finite elastic constants, between a flat solid phase and a

crumpled tethered surface has also recently been investi-
gated via the e expansion by Paczuski, Kardar, and Nel-
son. '

Further evidence of the existence of the flat phase has
been provided by Kantor and Nelson. " They have used
Monte Carlo techniques on a tethered-surface model
with D =2, d =3, and an energy of the form

E = —tc g (n np
—1)+ V(r; —r, ).

(a,P) i,j&

In this equation, tc is proportional to the continuum ri-
gidity, n, c IR4 is normal to the ath plaquette, and V(r)
is a nearest-neighbor tethering interaction. These au-
thors find evidence of a continuous, finite-tc crumpling
transition between low-temperature (large tc) flat and
high-temperature crumpled phases, within the size limits
of their calculation.

The purported existence of a flat membrane phase nat-
urally leads one to consider the general question: How
do thermal fluctuations modify the elasticity of a D-
dimensional solid which is embedded in a d-dimensional
space (with D (d) and is given a reasonable energetic
cost for extrinsic curvature? In this Letter, we investi-
gate such a surface. We find that below the upper criti-
cal dimension D„,=4, conventional elasticity theory
breaks down and all elastic constants are infinitely renor-
malized in the infrared. We investigate the effects of
thermal fluctuations in this regime using an e =4 Dex-—
pansion, derive exact relations between exponents, com-
pute these exponents to 0(e), and discuss our results'
implications for the theory s lower critical dimension.

For our investigation, we first must construct a long-
wavelength free-energy functional appropriate to a
homogeneous and isotropic D-dimensional solid (mem-
brane) whose mass points are indexed by a vector
x G R . Let the position in R" of the mass point indexed
be x by the vector r(x), and assume that the configura-
tion r(x) =(x,0) is one of minimum energy. We here

d,use 0 to denote the zero vector in IR ', and denote the
solid's codimension d Dby d, . By continuum —elastic
theory, ' the associated stretching energy is a scalar
function of the strain tensor u;J= —,

'
(g;J —8;~) = —,

' (8;r
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B,r —8;, ), where 8;=8/8x;. Expansion in u;, to leading
order, after demanding rotational invariance in both IR

and R, yields the standard stretching free energy,

F, = —'„d x(ku$p+2pu;, ),

where X and p are Lame coefficients. One can show

that, for D near 4, higher-order invariant combinations
of u;~ are irrelevant operators.

The stretching energy F, is exclusively a function of
the metric tensor g;~, and thus is a geometrically intrinsic
quantity. In other words, F, is independent of the solid's

embedding in IRd. To stabilize the solid with respect to
fluctuations in the d, directions perpendicular to itself,
we must add to the free energy an extrinsic term; one
which explicitly depends on the embedding of the sur-
face. We expect such a term to correspond to a coarse-
grained bond-bending energy. Accordingly, we consider
a bending energy Fb which is a functional both of the ex-
trinsic curvatures measured by the second fundamental
form K;J and of the intrinsic geometry characterized ei-
ther by the metric tensor g;~ or equivalently, by the
strain tensor.

To derive a form for Fb [K,u;&] which will be valid for
arbitrary D and d, we first consider the special case of
d, =1 so that the surface has a single normal vector field

n(x). For this case we choose Fb to be the continuum
limit of Kantor and Nelson's bending energy"

Fb= lim x g (1 —n, n&)
continuum (~,p)

fO

=lim-,' xg(n. —np)'= —,
' x„dDx(Vn)'. (1)

One can show that (Vn) =KJ K;&, where the second
fundamental form K;~ is the vector of tensors K;,
=r);r1~r I ~jBkr. Thu—s we can express Fb in terms of
the extrinsic curvature:

Fb= —, x' d xKJ' K;J, (2)

and can analytically continue in d by choosing (2) as the
general form for Fb. It is worth noting that when D =2
and d =3, (2) is consistent with the elasticity theory of
thin plates conventionally known as shell theory. "

Our expression for Fb should be contrasted with the
bending free energy FH which Helfrich used to describe
a fluid membrane. Up to total derivatives, one can
write

FH = —,
' x dS H = —,

' x„d xJg K' KJ.

Near D =4, one can show that both free energies are
identical up to irrelevant operators; however, in general
Fb&FH. That the bending energy associated with a solid
is different from that of a fluid membrane should not be
too surprising. A mathematical description of a con-
stant-density fluid surface cannot depend on the coordi-
nates used. In contrast, the solid's local density is a

function of the displacements. Because x indexes mass
points, the solid has a special coordinate system —the
one in which the mass density p(x) is constant. The
solid does not have the fluid's coordinate transforination
invariance because any stretching induces microscopic
bond movement and thus induces changes in the bending
energy, whether or not the transformation changes the
embedded geometry.

We are interested in investigating the surface in its
low-temperature flat phase. Accordingly, it is sensible to
assume that displacements are small, and that self-
overlaps will be negligible. We represent the position
vector r(x) in the form

r=(x+u, h); x,u(x) c IRD; h(x) clR ',

and average over both the phonons u(x) and the capil-
lary waves h(x). Our full phenomenological free energy
F is the sum of Fb and F, . After expansion of F in u and
h, an analysis of the various terms' engineering dimen-
sions' shows that F has upper critical dimension
D„,=4. Near four dimensions F can be expanded in the
form

F= —,
' „dDx[x(V'h)'+2pui'j+Zu;]

+ irrelevant, (3)

where u;J=8; uj+jlu;+r);h 81h is the relevant part of
the strain tensor. One should notice that Fb's sole
relevant contribution to F is the Gaussian term (x/2)
x (V~h) ~. All relevant nonlinearities originate from F, .

One can show by rescaling u and h that perturbation
theory in the nonlinear terms actually corresponds to an
expansion in the two coupling constants K=X/x and

p =p/x . Accordingly, the flat (high x) phase occurs at
small values of the coupling constants and can be studied
with the aid of a perturbative renormalization-group
analysis. In particular, the Gaussian (K =@=0) theory
corresponds to x =~, i.e., the flat phase at T=0.

The Gaussian part of F can be diagonalized by our
writing u=u~+u~~, where u~~i1 is the transverse (longi-
tudinal) part of u. In the limit p 0, h is only coupled
to u~~. Accordingly, we can define a model for a shearless
elastic medium, e.g. , a "fixed connectivity fluid" by set-
ting p equal to zero and suppressing the transverse pho-
nons (i.e., by setting u~ =0). In this limit the rigidity is
not renormalized, because A, uP =X[V.u+ (Vh ) /2],
so that u~~'s coupling to h can be removed by a shift of
ui. Integrating u out thus yields a Gaussian effective
theory for h with an unchanged value for x..

The presence of transverse phonons, along with
nonzero p, makes the theory nontrivial. We have ana-
lyzed (3)'s infrared behavior using the field-theoretical
renormalization group' in a D =4 —e expansion at fixed
codimension d, after renormalizing F by minimal sub-
traction. As for the case of fluid surface models, ' it
proved useful in renormalizing to take advantage of the
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TABLE I. r) functions, fixed-point values of 2 and p, and exponents at the fixed points. (For
clarity of presentation, we have written k=)j. and p—=p in the ri functions. ) In all cases, the
equations p( —e+ ti&+2r)) =(k+2@)(—e+ qii+2g) =0 are satisfied.

Fixed

point

0

0
12m

20+ d,
12t.

24+ d,

0
2E/d,
—6e

20+ d,—4t.
24+ d,

5p(p+X)/2rl=
X+2p

0
0

2+ d, /10

2+ d, /12

0
0

I + 20/d,

1+24/d,

p +2k(k+p) d,
k+2@ 4

I +20/d,

I +24/d,

original theory s invariance under rotations and transla-
tions in IR . These continuous symmetries lead to Ward
identities from which one can prove that the entire
theory will be regularized if one chooses renormalized
elastic constants xg, kg, and pg which make finite the
momentum-space vertex functions [d/d (q )]I „„and
[d'id(q ') ']rg (q).

After renormalizing at a length scale I, we derive re-
cursion relations for the dimensionless renormalized cou-
pling constants P= pal' and k=kpl' by demanding that
bare correlation functions be independent of /. To O(e)
the associated p functions are

p„-= [—4ep+ p'(-,' d, +20')]/16,

pI = [—4ek+ p —,
' d, +2k d, + 2kp (d, + 10M )]/16,

where A = () +p)/(X+ 2P). Solving the fixed-point
equations pI =p„-=0 leads to the four solutions shown in
Table I. The flow diagram is shown in Fig. 1. For
D ~ 4, the Gaussian fixed point is stable, and the non-
linear terms are irrelevant. Below four dimensions, any
thermodynamically stable theory will be driven to fixed
point (4) at long wavelengths. The boundary lines P =0
and k = —p/2 correspond [to O(e)] to the limits of sta-
bility of the D-dimensional solid —which by itself is ther-
modynamically stable only when both p and the bulk
modulus 8 =)+2@/D are positive. ' The line p =0 cor-
responds to the fixed-connectivity fluid, which is driven
to fixed point (2) at long wavelengths. Fixed point (4) is

globally attractive and controls the physics of the flat
phase. The fixed point controlling the crumpling transi-
tion ' occurs at coupling constants 2, p of order unity
near D=4, and is thus beyond the reach of our low-

temperature renormalization group. Our theory is thus
analogous to that of the elasticity of smectic liquid crys-
tals for d ~ 3, ' but not analogous to systems such as the
nonlinear cr model, where low-temperature renormaliza-
tion groups at dimensions just above the lower critical di-
mension give information about disordering phase transi-
tions.

We can, however, compute the eÃects in the flat phase
of the d, extra dimensions on the solid's elastic con-

stants. At fixed points (2) and (4), the vertex functions
pick up anomalous dimensions so that the elastic con-
stants are nontrivially renormalized. The propagators
obey scaling laws characterized by the exponents ri, ri&,
and tl~~ defined by

r„.„,(q)-C~q "', r.„.„(q)-Ciiq

rpp(q)=q4v(q)-C~4 ".

The exponents are computed by the evaluation of tl func-
tions at a given fixed point. We have tabulated the fixed
points, tl functions, and critical exponents at each fixed

n

P./p
A A

FIG. 1. Flow diagram in the (P,k) plane for d, =1. The
O(e) flows along the eigendirections at each fixed point are
schematically drawn in. The lines p. =0, X —P/2, and
k= —p/3 are invariant submanifolds under renormalization-

group flows to O(e). The D-dimensional solid is, by itself, un-

stable in the shaded region. The fixed-connectivity fluid corre-
sponds to the line j=0. For @~0 (D ~4), fixed point (4) is

globally stable, and fixed point (2) is stable along the P=0
axis. For negative e, the Gaussian fixed point (1) is globally
stable.
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rii =rit=ri„=4 —D —2ri (4)

for the solid. Table I is consistent with these results.
The renormalization of elastic constants described by the
above equation is similar to that occurring in smectic
liquid crystals in d ~ 3. '

As stated above, our calculation presumes that the
surface remains asymptotically flat and exhibits long-
range order in its tangent vectors. Nelson and Peliti
have shown that such long-range order exists if the
correlation function ((Vh, ) ) stays finite. This condition,
which also implies that the surface's Hausdorff dimen-
sion' DH is equal to D, is satisfied whenever

D —2+ri &0. (5)

Thus, the bending terms in F act to stabilize the flat
phase whenever ri is positive, which it is near D =4. If ri

remains positive down to D 2, the rigidity will extend
downward the range of D for which the flat phase exists
to a lower critical dimension Dl, satisfying 2& Dl, & l.
From (5) we see that at Dl„ri=2 —Dl„which, in con-
junction with (4), implies that ri& rit =D1, at Dl, . In-
sertion of these values into the exponents' defining rela-
tions shows that at D1„ I „„-Iht, -q '. The spectra

2+ Die

of the phonons and of the capillary waves scale identical-

ly, and the surface crumples.
It is interesting to observe that there is a second criti-

cal dimension Dt, defined by (u ) ~, or by Dh —2
—ri„=0. Below Dt„ long-range periodic order ceases to
exist. If ri„remains positive down to D =2, then D =2 is

less than Dh and a two-dimensional solid membrane
would have bond-angle but not positional long-range or-

point in Table I. The theory s underlying rotation invari-

ance leads to connections between t) and p functions. In
particular, we can prove that at any fixed point the equa-
tions

p( —e+ri +2t)) =0, (Z+2p)( —e+riii+2ri) =0,

are exactly satisfied. These equations imply that ri1=e
is true to all orders in e for the fixed-connectivity fluid

(for which ri=0), and that

der. It would thus be a fixed-connectivity hexatic.
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