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Critical Behavior in (2+1)-Dimensional QED
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QED in 2+1 dimensions, analyzed in the l/N expansion, is shown to exhibit a critical behavior as the
number N of fermions approaches 32/tr . The dynamical mass has a universal scaling behavior at the
critical point. The existence of criticality is discovered first by an analytic study of the gap equation and
the eff'ective potential. Its existence and universality is then confirmed numerically. Similarities to
four-dimensional theories are discussed.
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Quantum electrodynamics in 2+1 dimensions (QED3)
is a superrenormalizable gauge theory with some resem-
blance to four-dimensional theories when analyzed in a
1/N expansion. ' In the massless theory, the dimension-
ful coupling a=Ne /8, which is kept fixed when the
number of fermions N is taken to infinity, provides the
only fixed scale in the theory. At momentum scales p
beyond a, the theory is rapidly damped. For p((a, the
singular behavior of the loop expansion is softened in the
1/N expansion. To each order in this expansion, the
Green's functions of the massless theory can be shown to
be infrared finite. ' The infrared finiteness is a conse-
quence of an effective low-energy scale invariance that
the theory exhibits to each order in 1/N. The effective
interaction strength in this limit is proportional to 1/N.

Despite this exemplary behavior of the massless the-
ory, dynamical symmetry breaking leading to a nonzero
fermion mass could take place. This question has been
examined previously ' to first and second order in the
1/N expansion. Incomplete analytic studies indicated
that dynamical fermion mass generation takes place for
arbitrarily large N. ' Numerical studies also demon-
strated mass generation, but were restricted to N ( 3 in
order to achieve convergence of the iterative procedure.
It is important to settle this question. Because of its
low-energy scale invariance, QED3 is a useful theoretical
laboratory to gain insight into dynamical symmetry
breaking in four-dimensional theories.

In this paper, it will be shown that to lowest order in
the 1/N expansion of the Dyson-Schwinger kernel, dy-
namical mass generation takes place only for N(%,
=32/tr . To what extent this result is modified by
higher-order corrections remains an open question.
Some concluding remarks will address this issue.

The Lagrangean of QED3 is

L =vt(i8 —eA ) tit
——,

'
F„2„,

where tit is taken to be a four-component complex spinor.
With the four-component notation, 4x4 matrices y3 and

y5 that anticommute with yo, yi, and y2 can be intro-
duced. Together with Eq. (1) and [y3, ys], they generate
a U(2) symmetry for each spinor. Thus the full global
"chiral" symmetry of the Lagrangean (1) is U(2N)
where N is the number of four-component spinors. A
mass term mytit would break this symmetry to
U(N)SU(N). The dynamical generation of such a
mass will be considered here. It is also possible to in-
clude a chiral-invariant but parity-nonconserving mass in

QED3. It has been argued, however, that the dynami-
cal generation of the parity-invariant mass is energetical-
ly preferred to the parity-nonconserving one. In this
Letter, we shall consider only the parity-conserving case.

The inverse fermion propagator is S(p) ' = —pA(p)
+Z(p), where Z(p) is a dynamical, parity-conserving
mass taken to be the same for all the fermions, and A(p)
is wave-function renormalization. The lowest-order gap
equation for Z(p) is formed by our setting A =1 and
neglecting other higher-order corrections. It is

z(p) = 8a ' d'k y"D„(p k»«-)y'
N 4 (2tr) k +g (k)

where, in the Landau gauge,

g„,—(p —k)„(p —k),/(p —k) '
(p —k ) '[1+II(p —k )]

To leading order in 1/N, II(p —k) comes from a single
fermion loop. For p, k&&Z(p), it can be explicitly evalu-
ated to give II(p —k) =a/

~ p —k
~
. Angular integration

in Eq. (2) then gives

4a "
d kX(k)

1
k+p+a

tr Np" o k +X (k) ~
k —p ~+a

(4)
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It is clear from the above discussion that this form of the
lowest-order gap equation does not correctly treat the
nonlinear regime k (Z(k). For X(k) «a, however, as
will be the case for N near N„ this will not be important.

The integral equation (4) is rapidly damped for p & a.
For p & a, it takes the approximate form

where 6 is a phase and Z(0) has been used to scale the
logarithm. The ultraviolet boundary condition (7b) in

the limit N 32/z then gives

2 (321/x N —1) ' [in[a/Z(0)]+/}

=nz (—32/x N 1)—' (l 1)

(5)
This approximate equation, in which the logarithm of
Eq. (4) is replaced by a hard cutoff at p =a, will first be
solved analytically to provide insight into the critical be-
havior. A numerical study of the full Eq. (4) will then
reveal the same value for N, and the same approach to
criticality.

Equation (5) can be replaced by the differential equa-
tion

d, dz(p)
dp dp

g p'z(p)
rr'N p'+Z'(p) ' (6)

together with the boundary conditions

0(z(0) & (7a)

and

dz(p) + ( )
p=a

=0. (7b)

Equation (7b) insures the absence of a bare mass and

the conservation of the axial vector current. If Z(p) « a,
there will exist a regime p»Z(p) where Eq. (6) can be
linearized. We first assume this to be the case and then

justify it in the limit N 32/x . In the linear regime,
the solution to the differential equation is

z(p)-p'
where

a = —
—,
' + —,

' (1 —32/x N) 'i

The system of equations (6)-(9) has a precise coun-
terpart in quenched QED4 solved in ladder approxima-
tion. There the dimensionless gauge coupling replaces
1/N and an ultraviolet cutoff replaces a. We simply car-
ry over the well-known analysis of this theory and re-
port the corresponding results for QED3.

For N & 32/x', the boundary condition (7a) leads to
the dominance of the solution a = —

—,
' + —,

' (1 —32/
z N) '~ in the linear regime p&&Z(p). This behavior is
incompatible with the boundary condition (7b) and
therefore Z(p) =0 is the only solution. For N & 32/x,
the linearized equation has an oscillatory solution which
can be written in the form

Z(p) =p ' sin( —,
' (32/x N —1) ' [lnlp/Z(0)]+A),

(lo)

where n =1,2, 3, . . . . Thus

z(0) =«i'+2) exp
(32/~2N —1) ii2 (12)

The phase 6 can depend on N but is not expected to be
singular in the limit N 32/x . The solution n =1 can
be shown to give the lowest vacuum energy and is there-
fore the vacuum solution. It gives the largest dynamical
mass Z(0) and a monotonically decreasing (nodeless) be-
havior of Z(p) for 0(p ~ a.

Equation (12), with n =1, exhibits the critical behav-
ior. Z(0) vanishes as N 32/x from below, as de-
scribed by the factor exp[ —2z/(32/z N —I)'i ]. It is

this factor that will be shown by a numerical study to be
universal in the sense of being independent of the ultra-
violet behavior p) a. In particular, the same factor will

appear in the solution to the full Eq. (4) in which the
high-momentum components are cut off softly rather
than abruptly as in the approximate Eq. (5). The nu-

merical study will also demonstrate that this factor is in-

sensitive to the nonlinear regime p (Z(0). The detailed
connection between the linear regime and p =0 is con-
tained in the phase 6 in Eq. (10). It will be shown that
the factor e in Eq. (12) is nonsingular as N 32/n,
independently of the treatment of the nonlinear regime

p ~ X(0). This is important since, as pointed out above,

Eq. (4) does not treat this regime correctly. What is

happening is that as N 32/z, the range between Z(0)
and a increases exponentially. The infrared regime

p (Z(0) and the ultraviolet regime p) a are not in-

creasing in this way and become relatively less impor-
tant. The universal factor exp[ —2z/(32/z N —I)'i ]
arises froin the growing intermediate regime.

Before we summarize the numerical study it is also
worth our mentioning that an independent derivation of
N, =32/z can be given by considering the local stability
of the effective potential about 2 =0. '0 For N & N„ the
Z =0 configuration is locally stable while for N & N, it is

unstable. This parallels a derivation of the critical cou-

pling for quenched QED4. "
In the numerical study, solutions to Eq. (4) are found

by an iterative procedure. As an initial guess, Z(p) is
taken to be a constant somewhat above the anticipated
Z(0). The numerical integration is cut off in the ultra-
violet, initially at some A»a. Since the theory is rapid-

ly damped beyond a, nothing is sensitive to this A. For a
series of values of N below 32/x, the iterative procedure
converges to give a finite Z(p). For N & 32/x2, however,
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the iterations converge to zero. For N & 32/x, Z(p) is a

monotonically decreasing function of p. In Fig. 1,
—[n[X(0)/al is plotted versus N, showing evidence for
a singularity as N 32/z . In Fig. 2, the plot of
—[n[Z(0)/a] vs 1/(32/rr N —1)'/ shows the expected
straight-line behavior with a slope approaching 2z. The
evidence from the numerical study is that Eq. (12)
correctly describes the solution to Eq. (4) as N 32/z
from below. In particular, the factor e' exhibits very lit-

tle sensitivity to N in this limit. A surprising feature of
Fig. 2 is that Eq. (12) provides a good fit for N as low as
unity.

The sensitivity of the solution to the details of the ul-

traviolet cutoff can easily be checked numerically. A
simple procedure is to change the computer cutoff A rel-

ative to the intrinsic cutoff a. We have rerun the
analysis for A=O(a) as well as for A«a. The latter
case should be approximated by Eq. (5) with a replaced

by A. Numerical results for A«a are also shown in

Figs. 1 and 2. The general result is that for any choice
of A, Z(p) is nonzero and monotonically decreasing
when N & 32/x . In the limit N 32/rr, with a and A

fixed, X(0) vanishes according to

Z(0) f —aexp 32' N —
1

(13)

30

where f is some dimensionless function of the ratio a/A.
The exponential factor appears to be a universal quanti-
ty, insensitive to the above changes in the ultraviolet re-
gime.

Insensitivity of this factor to the details of the non-
linear regime, where Eq. (4) is not correct in detail, can
also be checked numerically. The integrand in Eq. (4)
can be modified for k (Z(0) in essentially any way that
is insensitive to N and that does not change the order of
magnitude of the integral. This has been done in a
variety of ways. In each case it is found in agreement
with the arguments presented above, that the behavior in
the limit N 32/rr is described by the exponential fac-
tor in Eq. (13).

Since spontaneous chiral symmetry breaking takes
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FIG. l. —In[Z(0)/a] vs N The squares correspond to.

A»a, and the triangles to A«a, where A is the computer
cutoff'. Both curves appear to approach an asymptote at 32/x .
Computational limits prevent checking N ) 3.1.

FIG. 2. —in[a(0)/a] vs I/(32/z N —1) 'i . The squares
correspond to A»a, and the triangles to A«a. As N 32/z'
the slopes of both lines tend towards 2z. A lower-precision al-
gorithm gave similar straight-line behavior, but with shallower
slopes. Improvements in precision led to a series of lines, whose

slopes appear to converge to 2z.

2577



VOr UME60, NUMBER 25 PHYSICAL REVIEW LETTERS 20 JUNE 1988

place only for N &N, =32/n, higher-order corrections
to Eq. (4) might be expected to be large. The point has

already been made that to determine N, and the ap-
proach to criticality, the relevant momentum range is

X(0)«p « a. Thus, to estimate higher-order corrections
to N, and to the exponential factor in Eq. (18), it should
suSce to compute the higher-order corrections to the
linearized gap equation in the limit a

&(p) = 8 dk
k

k+p —ik —pi
~'Np" o 2

. (14)

This equation leads to Eq. (8) with a(1+a) = ——,
'

x 32//rr2N and therefore to Eq. (9).
The higher-order corrections will include the wave-

function renormalization A(k), as well as the vertex
correction and higher-order corrections to the gauge bo-
son propagator. There is also the crossed ladder contri-
bution to the kernel. In Ref. 5, it was argued that these
contributions will lead to 1/N (and higher) corrections to
the integrand of Eq. (14) with no dynamical enhance-
ments. If that is the case, a corrected expression for
a(a+ I) should emerge from the computation. It will

read

a(1+a) = —
4 (32/n N)(1+c32/z N+ ). (15)

The corrected value of N, will presumably be determined

by our setting (32/x N)(1+c32/rr N+ ) equal to
unity. This quantity will then also replace 32/x N in the
exponential factor in Eqs. (12) and (13).

The importance of the second-order term will depend

on the size of the coefficient c. If it is considerably
smaller than unity, for example, the second-order term
will not change the qualitative features uncovered with

the lowest-order kernel. This computation is currently
under way.

To conclude, quantum electrodynamics has been
shown to exhibit spontaneous chiral symmetry breaking
when analyzed in a 1/N expansion, provided N & 32/z .
This result has been established with only the first term
retained in the 1/N expansion of the kernel of the gap
equation and effective potential. Whether it is modified

by higher-order corrections is currently under study. In
the first-order analysis, the dynamical fermion mass van-

ishes as N 32/z in a universal manner, independent
of the details of the ultraviolet cutoff or the infrared,
nonlinear regime.

If the result demonstrated here is not qualitatively
changed by higher-order terms, it opens up a variety of
questions. Are the broken-symmetry solutions local
minima of the effective action? Is there a critical behav-
ior for a parity-nonconserving mass? How is the critical
behavior modified by finite temperature and the inclusion
of supersymmetry? A lattice study of QED3 could help
to shed light on all these questions.
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