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Evidence for a Scaling Solution in Cosmic-String Evolution
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We study, by means of numerical simulations, the most fundamental issue of cosmic-string evolution:
the existence of a scaling solution. We find strong evidence that a scaling solution does indeed exist.
This justifies the main assumption on which the cosmic-string theories of galaxy formation are based.
Our main conclusion coincides with that of Albrecht and Turok in previous work, but our results are not
consistent with theirs. In fact, our results indicate that the details of string evolution are very dift'erent

from the standard dogma.
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The idea that cosmic strings might be the seeds for
galaxy formation has been around for many years, ' and
it has recently attracted a fair amount of attention be-
cause of its apparent ability to account for aspects of
large-scale structure. More recently Ostriker, Thomp-
son, and Witten have proposed that cosmic strings of
the superconducting variety might be responsible for ex-
plosive galaxy formation. Despite this interest in cosmic
strings, the fundamental issue of how a string network
evolves in the early universe has not yet been resolved.
An implicit assumption in most of the work on cosmic
strings to date is that the energy density of the strings
scales like radiation during the radiation-dominated era,
but this assumption has not yet been confirmed.

Strings (if they exist) should have formed when the
Universe was very young, but they are expected to be
relevant at much later times because the majority of the
string length at the time of formation is in the form of
infinitely long strings. These infinitely long strings can-
not radiate away into gravitational radiation, and so they
are expected to survive indefinitely. This is the reason
that cosmic strings might be relevant for galaxy forma-
tion, but it also poses a potential problem for the cos-
mic-string scenario.

Although cosmic strings are complicated configura-
tions of Higgs and gauge fields, their behavior in a
cosmological context can be almost completely described
by equations of motion derived from the Nambu action
which describes fundamental strings. The only time
when the details of the field theory play an important
role is when two strings cross. %hen this happens they
can either pass through each other or they can "inter-
commute" (break and reconnect the other way). Nu-
merical calculations by Shellard and Matzner for the

simplest field theories with strings indicate that inter-
commutation occurs in almost every case, and this is

what is assumed in this paper. Without intercommuta-
tions, it can be shown that the energy density of the
infinite strings will scale roughly like nonrelativisti'c
matter. Thus, if strings do not intercommute, then the
cosmic strings would become the dominant form of
matter in the Universe, bringing the radiation-dominated
era to a premature end. With intercommutation, it has
been postulated that such a "disaster" can be avoided by
the process by which the infinitely long strings cross
themselves and break off small loops which can decay
into gravitational radiation and thereby transfer their en-

ergy density into gravity waves. This scenario has been
studied analytically by Kibble and Bennett, who
showed that either loop production is not suf5cient to
avoid a string-dominated universe, or the strings will set-
tle down to a scaling solution in which the number of
strings crossing a given horizon volume is fixed and the
energy density in strings scales as t like radiation. It
has not been possible to decide between these two possi-
bilities analytically, so that this question must be re-
solved through numerical simulations.

The first numerical simulation of cosmic-string evolu-
tion was done by Albrecht and Turok (hereafter re-
ferred to as AT). Although this was important pioneer-
ing work, their program was fairly crude, and their pub-
lished results have been challenged on the basis of ana-
lytic work and have been shown to be inconsistent with
the "standard" model for loop production.

In this Letter we present the first results of a large nu-
merical study of the evolution of a cosmic-string net-
work. First, we outline our numerical method, drawing
attention to where it divers from the AT method. Then,
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we present our results and discuss some of the numerical
difficulties that we have faced. Our conclusion is that a
scaling solution does indeed exist, but many of its prop-
erties are very different from previous assumptions and
from the AT results.

The basic strategy for our simulations is as follows:
First, we generate our initial conditions following the
general procedure introduced by Vachaspati and Vilen-
kin. The one improvement that we have made is to re-
place the generated sharp corners by arcs of circles (this
helps to minimize the number of discontinuous deriva-
tives that the program must deal with). Then, we solve
the partial diA'erential equation describing the string
motion using a finite-differencing scheme. Finally, inter-
commutation is included by our checking for crossings
between different string segments during the time step,
and reconnecting the string segments the opposite way,
when necessary.

It is important to note that our initial conditions are
not supposed to be a particularly good representation of
the string spectrum at the time when the strings begin to
move freely (when the friction from the surrounding
medium becomes negligible' ). If a scaling solution ex-
ists, then it should be reached from a large variety of ini-
tial conditions. We have chosen these initial conditions
because their large-scale structure is similar to what we
would expect for real strings. This should minimize the
relaxation time to the scaling solution if it exists.

In order to evolve the generated configuration, we

solve the partial differential equation derived from the
Nambu action in an expanding universe with metric
d' =a ( —dr +dx ). The equation is"

x+2 —x(1 —x') =
a

in the gauge where x x'=0 (i.e., the velocity is perpen-
dicular to the string). Dots denote derivatives with

respect to conformal time r, primes denote partial
derivatives with respect to the string length parameter o,
and e = [x' /(1 —x )] ' . (pa Ied+ is the strong energy,
where p is the string tension. ) Spatial derivatives at
midpoints are obtained by finite differences, while we use
a modified "leapfrog" scheme for the time integration.
We evolve e semi-implicitly according to i = —2(a/
a)ex which can be derived from Eq. (1). Each loop
carries its own time step satisfying the Courant condi-
tion. The overall evolution scheme is second-order accu-
rate.

A major numerical difficulty is that the strings have
physical discontinuities in I and x, which result from in-

tercommutations. These "kinks" have a long lifetime
and are likely to have important implications for the
spectrum of loops produced. To avoid the development
of short-wavelength instabilities near the kinks, we intro-
duce some numerical diffusion that we try to keep at a
minimal level. This is accomplished by an averaging of
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the velocities over neighboring points, but only when an
instability starts to develop, i.e., whenever the quantity
x +(x'/1. ) & 1 by a few percent. We have tested this
procedure on loops with kinks in flat space and found
that the numerical diffusion was only invoked at the
kinks, and that the numerical loop trajectory stayed
much closer to its analytic value than with either a
scheme without diffusion or one that is always diffusive,
like the one used by AT.

In order to determine if two string segments crossed
during the time step, we check the volume of the tetra-
hedron spanned by the four points on the two segments.
If it changed sign during the step, the configuration is

checked at the time that the volume is zero, to see if a
crossing did really occur (the positions of the points are
extrapolated linearly between time steps). This pro-
cedure is almost exact, the one exception being when a
crossing occurs as the tetrahedron volume changes sign
twice. (This was was explicitly checked for in one run
and found to be very rare. ) Our procedure was tested
with a two-parameter family of flat-space loop trajec-
tories for which the self-intersections can be found alge-
braically, and the scheme did not miss a real crossing or
find a spurious one in hundreds of tests. In contrast to
our technique, AT divided their box into 80 ce.ls, and
performed intercommutations whenever two string seg-
ments were in the same cell at the same time. Obvious-

ly, this procedure yields some spurious crossings.
Finally, when two segments have been determined to

cross, we interchange partners and locally "resample"
the string to help reduce the amount of diffusion invoked
in the subsequent evolution. More details of our numeri-
cal techniques will appear elsewhere. '

We have performed two runs with boxes of size 36(0,
14 runs with boxes of size 28(o, and more than 40 runs
with smaller boxes. ((0 is the correlation length of the
strings in the initial configuration. ) A typical run on a
28/0 box with ten sampling points per correlation length
would use 160000 points and run for a time interval of
16/0 (about 100 CPU hours on a Cray-2 computer).
Our largest run had twice as many points and ran for a
time interval of hr =30.4(0/c. In contrast, AT ran most
of their runs on 16(0 boxes with five points per correla-
tion length' and about 18000 points. Their typical time
interval was 5(o/c.

Figure 1 shows a cube of side ct that has been "cut"
out of the final configuration of a typical 28(0 run after
500 time steps and expansion by a factor of 2.25. (This
shows about 1/10 of the total volume of the box. ) One
important feature that is apparent from Fig. 1 is that the
majority of the string length is in the form of small loops
in contrast to the initial condition where there are no
small loops and 80% of the string length is in infinite
strings. This is evidence that the infinite-string energy is
indeed being transferred into small loops.

In an effort to "bracket" the scaling solution in the ra-
diation era, we evolved several configurations with dif-
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FIG. l. A volume of size ct on the side that has been "cut"
out of the final configuration of a run on a 28(o box (see text).

ferent initial horizon sizes, and thus diff'erent initial ener-

gy densities in long strings pt. (tp), to see if pL scales as
radiation as required for a scaling solution. (Long
strings are defined to be of proper length ) 3 2ct )Fig.-.
ure 2 shows the behavior of pt t /p as a function of time
for several different runs. It is apparent that the
different runs seem to be converging towards similar
(constant) values pt. t /p = 28, indicating a scaling solu-
tion.

We have done many tests and found that our results
are independent of most of our numerical parameters.
Results of runs with five sampling points per correlation
length agree very well with those with ten or twenty
points (the runs in Fig. 2 all used ten points per correla-
tion length). We have tested to see at what stage our
periodic boundary conditions might influence our results,
and we have found no evidence of boundary effects if the
run is stopped before ch, i equals the co-moving box size.
The one numerical parameter that does influence our re-
sults is the lower cutoff on the size of the loops that can
be produced. Because we do not expect our evolution
scheme to be very accurate for loops with very few
points, we do not allow loops with fewer points than our
lower cutoff to form. For the runs shown in Fig. 2, the
cutoff is ten points.

The reason for this cutoff' dependence is because loop
reconnection to the infinite strings is much less efficient
for very small loops than for larger ones. Thus, reducing
the lower cutoff increases the efficiency of loop produc-
tion (by decreasing the loop reconnections) and de-

creases the scaling-solution value of pLt /p. Thus, our
determination of pLt /p may suff'er from a systematic er-
ror due to our small-loop cutoff'. Figure 3 shows pLt /p
for a series of runs in which we have varied the small-
loop cutoff. We have referred to the cutoff' as a fixed
fraction of the gp because some of the runs in Fig. 3 have
different numbers of sampling points per correlation
length, and it is only the ratio of the cutoff to the number
of points per correlation length that influences our re-
sults. Although it is clear from Fig. 3 that pLt /p shows
some cutoff dependence, the runs with the cutoffs
Xp =0.6gp and 0.3gp seem to be converging toward a
cutoff-independent scaling-solution value of pLt /p = 20.
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FIG. 3. Influence of the cutoff' ko on the energy density in
long strings for two different initial densities which bracket the
scaling solution.
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With a conservative estimate of the cutoff' dependence as
well as other possible systematic errors, our value for the
energy density in long strings is pLt /p =20+ 10. It
should be stressed, however, that our result is very
different from that of AT, who reported evidence for a
scaling solution with pLt /p =2.5 ~0.5. Thus, our re-
sults cannot be considered to be consistent with theirs.
The main reason for this difference is that the strings in
the AT simulations lost a significant amount of energy
through numerical errors. '

In fact, our results differ dramatically from the stan-
dard scenario that has usually been assumed to describe
string evolution. The standard scenario for loop produc-
tion holds that horizon-sized "parent" loops break off the
infinite-string network and fragment into roughly ten
"child" loops of roughly equal sizes, but we find that in
addition to the horizon-sized parent loops, the infinite
strings lose significant amounts of energy directly into
small loops. The reason for this is presumably that the
strings have a lot of short-wavelength structure in the
form of the kinks that are formed whenever strings cross.
Furthermore, we find that the fragmentation of the
parent loops does not terminate with ten equal-sized
child loops. Instead, we find that most, but not all, of
the child loops are close enough to our lower cutoff on
loop size (usually go) so that their chances of fragment-
ing further are significantly (or completely) suppressed.
It is fortunate that the fragmentation probability is so
high because it implies that the type of transient dis-
cussed in Ref. 7 which might mimic a scaling solution
can probably be ruled out.

We have studied the evolution of a network of cosmic
strings with a computer code that has a much larger
dynamical range and which we believe is much more ac-
curate than the code written by Albrecht and Turok.
Our results strongly support the existence of a scaling
solution in the radiation era, but the density of long
strings at the scaling solution is pL =(20~ 10)p/t In.
more physical terms, pL is 7x10 (Gp/10 ) times the
radiation density. (The total string density has not been
determined because it is dominated by the small loops. )
This is almost an order of magnitude larger than the
value reported by Albrecht and Turok. The source of

this disagreement has been found to be numerical energy
loss in the AT code. An improved version of the AT
code, while still under development, now produces results
that may be consistent with ours. ' We find that a great
deal of the loop production goes directly into small loops
and that the large loops that are produced have a much
higher probability to fragment into small loops than has
previously been assumed. In fact, the bulk of the uncer-
tainty in our value for pL is due to possible systematic er-
rors caused by the abundance of the small loops near the
lower cutoff.

More details on our numerical algorithms, the testing
of our code, and our results will soon be published. '

We would like to thank Andy Albrecht, Mare Davis,
George Fuller, and Neil Turok for many stimulating dis-
cussions. This work was supported in part by the U.S.
Department of Energy (at Fermilab and the Institute of
Geophysics and Planetary Physics), the National Science
Foundation (at Chicago and Berkeley), and NASA (at
Fermilab).

On leave from Centre de Physique Theorique, Ecole Po-
lytechnique, Palaiseau, France, and Institut d'Astrophysique de
Paris, Paris, France.

'See A. Vilenkin, Phys. Rep. 121, 263 (1985).
2N. Turok, Nucl. Phys. B242, 520 (1984).
J. P. Ostriker, C. Thompson, and E. Witten, Phys. Lett. B

180, 231 (1986).
4E. P. S. Shellard, Nucl. Phys. B283, 624 (1987).
5R. Matzner, to be published.
6T. W. B. Kibble, Nucl. Phys. B252, 227 (1985).
7D. P. Bennett, Phys. Rev. D 33, 872 (1986), and 34, 3592

(1986).
A. Albrecht and N. Turok, Phys. Rev. Lett. 54, 1868

(1985).
T. Vachaspati and A. Vilenkin, Phys. Rev. D 30, 2036

(1984).
'oA. E. Everett, Phys. Rev. D 24, 858 (1981).
"N. Turok and P. Bhattacharjee, Phys. Rev. D 29, 1557

(1984).
F. R. Bouchet and D. P. Bennett, to be published.

' Albrecht and Turok have recently done larger runs.
A. Albrecht and N. Turok, private communications.

260


