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Nucleation of Thermal Sine-Gordon Solitons: Efkct of Many-Body Interactions
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The nucleation rate of interacting thermal kinks and antikinks in a sine-Gordon chain is evaluated
within the dilute-gas approximation. Our novel result describes both the diff'usive and nondiff'usive lim-

its. In comparison with the nondiffusive and noninteracting nucleation rate calculated previously by
Buttiker and Landauer, interactions modify the temperature dependence of the prefactor and, in the
diff'usive limit, the Arrhenius factor as well.
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(((x,t)&(x', t')) =2ttkTa(t t')b(x —x'). —(2)

Our principal interest is in the evaluation of the steady-
state production rate of kink-antikink pairs. Nucleation
of pairs does not modify the winding number of the
sine-Gordon string. Our determination of the nu-

Condensed-matter physics, nonlinear optics, and en-

gineering sciences provide a true storehouse of solitons. '

In this paper we belabor the ubiquitous problem of trans-
port of infinitely many particles in an array with

infinitely many states of local stability, typified by a
driven, damped sine-Gordon string. Such systems are in-

vestigated in connection with dislocation theory, charge-
density waves in dielectrics, or Josephson transmission
lines to name but a few. ' Here, we consider the per-
turbed sine-Gordon equation for the field 8(x,t) in the
units of moment of inertia2 I =1,

8«+a8, =u, 8„„—Vpsin8 F+g(x, t), —

where a is a friction coefficient, F a constant bias force,
and u, the sound velocity of the free string, and g(x, t)
denotes thermal, Gaussian white noise obeying at tem-
perature T the Einstein relation

F/Vp & F'"/Vp=2(a/tap) (3)

with Vp=taj. In the following we shall address only the
overdamped limit, a» tap, so that in the region of multi-
stability (F/Vp & 1) the condition (3) is always satisfied.

cleation rate is, therefore, independent of the total topo-
logical charge of the string. The presence of the fluc-
tuating force g(x, t) impacts the transport properties of
the thermalized gas of kinks and antikinks. These kink-
antikink collisions can be analyzed by extension of the
perturbation treatment of McLaughlin and Scott. The
collision of two unperturbed kinks (or antikinks) is elas-
tic with a mutual repulsive interaction. With the friction
force acting this bouncing mechanism is essentially un-
changed. The situation is markedly distinct, however,
for kink-antikink collisions. The kink-antikink interac-
tion is attractive and, in the absence of thermal forces,
reflectionless. This is no longer true in the presence of a
strong damping. The internal viscosity of the colliding
kink-antikink string configuration may not be compen-
sated by an external field of limited strength or by weak
thermal fluctuations; i.e., the kink-antikink collision be-
comes destructive provided that
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uF =upy(F/Vp), (4)

where up=u, cop/a, and p is a universal function. For
small fields, say F/Vp & O. S, p is to excellent approxima-
tion linear in F, i.e.,

In the overdamped limit the propagation velocity uF of a
driven kink exhibits a universal behavior '

Since the average distance L between annihilating
(anti)kinks is given by L =1/np, where np denotes the
steady-state kink density, the mean lifetime rF of kinks
in the dilute-gas approximation is determined by the
identities (hx (rF)) =L~=np ~. Observing that in the
overdamped regime the third term on the right-hand side
of (8) is negligible, we obtain

uF up 4 ttF/Vp. (s) rF =(D/uF') [ 1+ [—I+(uF/Dnp)'] ' '} (9)

x =uF+ i;(t), (7)

where (g(t)((0)) =2Db(t), with D =(kT/aEp)u, .
We now turn to the problem of nucleation of kink-

antikink pairs in the presence of a dilute gas of thermal-
ized kinks and antikinks. Previously, the problem of nu-

cleation has been addressed under the condition that
many-body eff'ects due to the presence of other kinks are
negligible. In this case, Buttiker and Landauer (see
also Pokrovskii and co-workers ) invoke Langer's ap-
proach' to calculate the "escape" of a sine-Gordon
string through a bias-dependent saddle-point configura-
tion (critical nucleus) corresponding to an energy barrier
2EF Their res.ults are valid within the limit of a dilute

gas (EF»kT) and large bias forces. The latter condi-
tion implies that the width of the critical nucleus is small

and the diff'usive motion of its components [see (7)] can
be safely neglected. The treatment in Ref. 2 can be pic-
tured as the escape of a single "particle" (corresponding
to the relative coordinate of the nucleating partners)
over a potential barrier 2EF into the vacuum"'; such a
particle is not allowed to collide with the gas of thermal-

ized kinks (antikinks) during the process of nucleation.
Thus, this treatment does not account for the many-body
eff'ects, such as a finite lifetime, which other thermalized

pairs may impose on the critical nucleus.
In order to evaluate the production rate in the pres-

ence of such many-body interactions, we rely on the sta-
tistical mechanics for a dilute gas of kink-antikink pairs.
The mean square displacement of a single (anti)kink fol-

lows from (7), i.e.,

With a» tpp, relativistic corrections to uF do not enter.
The motion of a single kink solution obeys a driven

Langevin dynamics. On introducing the kink momen-

tum p=(u/u, )Ep(1 —u /u, ) 't, with u=x, and mak-

ing use of the perturbation argument of Ref. 4, one ob-
tains the relativistic Langevin equation driven by Gauss-
ian white noise, y(t), of vanishing mean, '

p = —ap+a(up/u, )Epp(F/Vp)+ spy(t)
Here y(t) obeys the Einstein relation (y(t)y(0)) =2ak
x TS(t ), and Ep

=8 u tpp denotes the rest energy of an

unperturbed (anti)kink. In the overdamped (and, there-

fore, nonrelativistic) limit we obtain from (6) the Lan-
gevin equation of motion for the kink center of mass,

rF rp = (2Dnt'i) ', F«F, .

Likewise, the nondigusive limit yields

TF rp (uFnp) ', F»F, .

(io)

The production rate I of thermal kink-antikink pairs
over unit length is thus given by the ratio of twice the
steady-state kink density over the kink mean lifetime,
i.e.,

I =2np/rF =2npD[[1+(F/F, ) ] ' + I}. (i2)

This is the main result of this paper. It describes a
smooth crossover between the diffusion-controlled pro-
duction rate I o and the nondiffusive limit I p. The two
limits of (12) read

I o =4Dn), F«F„
and

I p =2uFnf, F»F,. (i4)

The general expression for I, (12), as well as the lim-

iting results (13) and (14), are given in terms of the
steady-state density np at finite bias F. To evaluate np in
the bias dominated regime we can invoke Langer's pro-
cedure'p which relates the nucleation rate to .the imagi-
nary part of the free energy of the critical nucleus, ImP,
i.e.,

lp=()Z" ~/~kT)1m', F»F,. (is)

The condition F» F, implies that the nucleating kink
and antikink gain an energy much larger than kT mov-

ing away from each other prior to subsequent annihila-
tion, and, thus, they do not strongly interact with other
nucleating pairs during the creation process. X denotes
the negative eigenvalue which corresponds to the sad-
dle-point configuration of the nucleus. We determined
kN for F/Vp & —,

' analytically:

valid in both the diffusive and nondigusive regimes of
kink propagation.

The diffusive limit is characterized by the condition
uF «Dnp , see'(7) and (9). In other words, with uF & u,
the diffusive limit implies extremely small fields F«F,
=kTnp/2tt Thu.s, with the dilute-gas limit (i.e., kTnp/
Vp«1) one finds for the lifetime in the diffusive limit

(hx (t)) =2Dt+uFt —2D(1 —e ")/a. (8) ,' xF/a— (16)
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At strong fields, kT/Eo &F/Vo & 1, A. is well separated
from the zero mode (Goldstone mode) describing the
translational invariance of the nucleation process. In
this case, ImP can be evaluated within the vicinity of the
saddle point and an alternative determination of I 0 is ob-
tained [see Eq. (21)]. Following Ref. 2 we denote the
result for the nucleation rate in this strong-field limit by
r, =raL. This in turn yields for the steady-state density
no=(I aL/2up)' . Next we consider the case of weak
forces, F being so small that the mechanical energy re-
quired for pulling an isolated kink through a distance of
the size of its width u, /coo is less than the thermal ener-

gy, kT, stored in the nucleating pair, i.e., 2zF(u, /coo)

& kT or, equivalently, —,
'

nF/Vo & kT/Eo .With F/Vo
& kT/Eo the nucleus configuration attains a broad ex-

tension. In this regime we can describe the nucleus as a
linear superposition of a kink and an antikink separated
by a distance X and whose interaction is mediated by the
effective potential

U(X) =2Eo —2rcFX 4E—oexp( —cooX/u, ).

The width X, of the critical nucleus is given by U'(X, )
=0, i.e., X, =(u, /coo)ln(16'(/nF). U(X, ) provides a

good estimate of the nucleation energy 2Ep. Taking fur-
ther into account effects due to the change of the kink

shape with varying the nucleus width, we obtained' an

improved, and rather accurate result for 2Ep, i.e.,

2Ep' =U (Xz ) — E0 =2E p ' 1 +— In
z F n F nF
sv, sv, 16v,

—
1 , & 0.9.F

Vp
)

With F/Vo & kT/Eo the potential barrier U(X) about X, is very flat and Eq can be identified to a good approximation
with the rest energy of a driven kink. Use of the same arguments as in thermal equilibrium (see, e.g. , Appendix C in

Ref. 2) then yields for the steady-state density at weak forces

no=(2/n) ' (coo/u, )(Ep/kT) ' exp( Eq/kT)—, F/VO& kT/Eo. (is)

This very result can be checked by our calculating alternatively I 0 from (15) with the restriction F,/Vo«F/Vo
& kT/Eo and, then, making use of the identity in (14), i.e., no =(I 0/2up) 'i . In such a regime the approximations' "
leading to raL do not apply, because one has to deal with two coupled collective coordinates, the Goldstone mode and a
"breathing mode. "'3 The latter mode describes fluctuations that change the relative separation between the kink-
antikink components of the extended nucleus configuration, but leave the nucleation energy essentially unchanged. It is

characterized by a small negative eigenvalue [see (16)]. Following the recipe presented in Ref. 13, one obtains ro and,
through (14), again (1S). For F tending to zero, no approaches the well-known thermal equilibrium density, '
no(F=0) =n,q Insert. ion of (1S) in (12) yields an explicit expression for the production-rate formula which interpo-
lates, now, between I D and I 0 with F/Vo & kT/Eo.

The new explicit result for I D valid at vanishingly small forces, F«F„reads

I D =(2/n)' (Np/u, ) (Eq/2a)(Ep/kT) ' exp( —3Eq/kT). (i9)

For F =0, this special result has been obtained (apart from an incorrect constant in the prefactor) by one of us previous-

ly. ' Note that the Arrhenius factor involves 3 times the rest energy of a driven kink, and the prefactor exhibits a
universal T 'iz dependence.

On inserting (5) and (1S) in (14), we obtain an approximate expression for I o, i.e.,

I p =(coo/u )(F/a)(Ep/kT)exp( —2Ep/kT), F /Vp«F/Vo & kT/Eo. (20)

I co)
~sr =

za u,
(2F) 'n EF

kT

&/2

exp
—2EF

kT

(2i)

This result, being a valid expression for moderately
strong forces kT/Eo & F/Vo & —,', differs from (20) by a
finite-lifetime-induced renormalization of the damping

Here, the presence of thermalized kinks during nu-

cleation does not affect the Arrhenius factor of the
production-rate formula but only its prefactor, which ex-
hibits a universal inverse dependence on the temperature.
In fact, the Buttiker and Landauer prediction for the
production rate in this regime 9 can be written explicitly
as

coe%cient a (i.e., a breathing-mode renormalization), '

' 1/2 i/2
~0 2 kT

a agL —a
x F EF

(22)

In conclusion, we have presented a unique approach to
the nucleation rate of thermalized kink-antikink pairs in
the limit of a dilute gas (kT/Ez « 1) by taking explicitly
into account the eA'ective interaction with other present
thermalized kink (antikink) solutions. These physically
important many-kink effects have not been addressed
previously in studies of the nucleation of kink-antikink
pairs. ' Our results are valid in the overdamped limit
(a»coo) thereby assuring that kink-antikink collisions
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are always destructive. We have addressed both the
diff'usive and the nondiffusive regimes of kink propaga-
tion and found a smooth crossover between these limits
in terms of the mean lifetime rF in (9). The interaction
always aff'ects the prefactor of the nucleation rate.
Moreover, in the diffusive regime it also has a strong
eff'ect on the Arrhenius factor with a smooth crossover
from 3 times the rest energy of a kink to a value given by
2EF [see (17)].
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