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Simple Variational Wave Functions for Two-Dimensional Heisenberg Spin- 2 Antiferromagnets
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We generalize a type of variational wave function introduced by Kasteleijn and Marshall, to include
long-range correlations and nonbipartite lattices. We find the lowest-energy wave function in a three-
parameter space for both the square- and triangular-lattice spin- 2 Heisenberg antiferromagnets. This
produces useful upper bounds on the ground-state energies of these systems. The wave functions are
completely explicit, so that precise estimates of expectation values are readily obtained by Monte Carlo
techniques. It appears that the antiferromagnet has long-range magnetic order on the triangular lattice,
as well as on the square lattice.

H ) a) =Z. ( a). (2)

If vf is a true ground-state wave function, then (1) may
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There has been a recent resurgence of interest in two-
dimensional spin- —,

'
quantum antiferromagnets, includ-

ing a number of studies using variational wave functions
of the Gutzwiller' or resonating-valence-bond 3

(RVB) type. Here we wish to discuss a different type of
variational wave function that has the virtue of being
very easy to work with numerically. This enables one to
search readily a fairly large parameter space in order to
find the best approximation to the ground state. In this
paper we examine specifically spin- —,

' antiferromagnets
on square and triangular lattices. However, we expect
that the general type of variational wave function de-
scribed below should be of rather general utility; another
possible application that comes to mind is the magnetic
phase diagram of solid 3He.

For the square-lattice Heisenberg antiferromagnet,
which has received much of the recent attention, ' we

find a wave function with energy E =&S; S/) = —0.3319,
where i and j are nearest-neighbor sites. This serves as a
useful (and strict) upper bound on the ground-state ener-

gy, which is estimated to be Eo= —0.334~0.001. The
various RVB- and Gutzwiller-type wave functions that
have recently been proposed' 4 have energies of —0.321
and higher. For the triangular-lattice case, we again ob-
tain a wave function with an energy (E = —0.1789)
well below the proposed RVB-type wave functions, but
probably not as close in energy to the true ground state
as for the square lattice. Previous numerical work on the
square-lattice case strongly indicates that the ground
state has long-range antiferromagnetic order '; it ap-
pears that this is also true for the frustrated triangular-
lattice case.

We consider variational wave functions of the form

H/2
~

where the jaj form a complete orthonormal set of basis
states and H, which contains the variational parameters,
is an operator that is diagonal in this basis:

(i.& -i, )/2

(3)

where A, /i
——&a ~A ~P). The Ikj are potentially complex

numbers. This expectation value is readily evaluated
with standard Monte Carlo techniques; it is just the ex-
pectation value of QiiA, iiexp[ —,

'
(Xii

—X,)] in the ensem-
ble where state a occurs with probability proportional to
~exp&, (. This ensemble may be viewed as the Boltz-
mann ensemble where the reduced Hamiltonian is the
real part of H (thus the notation). That expectation
values may be so readily obtained numerically makes
this type of variational wave function rather versatile
and potentially quite useful for a variety of applications.

The quantum systems we will consider here are
Heisenberg spin- —, antiferromagnets with Hamiltonian

H Zi(ij)Si ' Sj, (4)

where the sum runs over all nearest-neighbor pairs of
sites on a two-dimensional square or triangular lattice or
a one-dimensional linear chain, and S; is the spin opera-
tor at site i Let us consid. er the square-lattice case first.
Marshalls has proven that the ground-state wave func-
tion yo of the spin- —,

' Heisenberg antiferromagnet on
any bipartite lattice (such as the square lattice or linear
chain) may be chosen to be real in the basis of the eigen-
states of the individual S;. In addition, i/io changes sign
upon exchange of any nearest-neighbor pair of antiparal-
lel spins. Thus for the square lattice, using this jS;j
basis, we can choose the relative signs (thus phases) of
the wave function to be precisely correct by having the
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be viewed as defining the "correct" H. In order to get a
good approximation to the ground state of a given sys-
tem, we want to find a best approximation to this
"correct" H using the variational method.

The expectation value of an operator A in the wave
function y may be expressed as

i,,'/2~ i,p/2

&A) =—& i/i i A i i/i) =
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imaginary part of 0 be

(5)

where the sum runs over only those spins on the 8 sub-

lattice. (All nearest neighbors of each spin on the 8 sub-

lattice are on the A sublattice, and vice versa. ) With this
choice we have (S; ) =0 for all sites, (S;"))0 for sites on

the A sublattice, and (S,")(0 for sites on the 8 sublat-
tice. The classical Neel state, ~(S,")

~

= —,', with spins

oriented along the x axis, is then obtained if ReH =0.
In general, the term in H linear in the S; corresponds

to the classical spin configuration. The wave function
given by

—,
' H, =g;h;S; (6)

is just the product of individual spin states where

exp( —,
'

h; —( ——,
' h;)) =exp(h;) is the ratio of the ampli-

tudes of the S;= —,
' and S;= —

—,
' eigenstates for spin i

To orient a particular spin i to have angular momentum
+ —,

'
along an arbitrary axis with polar coordinates

(8,p), we choose

h; = log [cot(8/2) ) ip— (7)

ReH = —g;~ K(r;z )S;S&, . (9)

where r;~ is the Euclidean distance between sites i and j
measured in units of the nearest-neighbor lattice spacing.
We have searched the three-parameter space

K(1)=K~, K(r) =k/r, r ) 1, (10)

Our choice (5) for the square lattice corresponds
to (8,&)~ =(x/2, 0) on the A sublattice and (8,&)g
=(z/2, m) on the 8 sublattice. We note that a vanishing
real part of H, is possible only when the classical spins
all lie in one plane.

Quantum corrections to the "classical" wave function
(6) may be introduced, for example, by the addition of
nearest-neighbor two-spin correlations,

Hz = K(g(;1)S—i'SJ',

where, as Marshall showed, K~ is real. The wave func-
tion given by (5) and ReH =H2 was examined by
Kasteleijn for the linear chain and Marshalls for a
variety of bipartite lattices. The lowest energy for the
square lattice is obtained for K|=1.1 and is E
= —0.322. Marshall's approximations to the energy of
this wave function gave an underestimate of —0.328.
Kasteleijn and Marshall failed to realize that this wave
function has a staggered magnetization along the x axis
of =84% of the classical ~alue; this appears to have been
first noted by Thouless. ' Note that K~ is small enough
that the fS;j do not order; this is true for all the wave
functions we discuss here.

We have generalized (8) to allow all two-spin interac-
tions:

for the square lattice and find the lowest-energy wave

function at K|=2.6, k=1.9, a =0.7 with E= —0.3319,
and a staggered magnetization along the x axis of =71%
of the classical value. These numbers should be com-
pared with the series estimates for the ground state of
—0.334~0.001 and 63%, respectively. Thus it appears
that we have found a wave function whose energy is

roughly 1% above the true ground-state energy. The
overestimate of the staggered magnetization is to be ex-
pected, since this variational wave function is based on
the classical wave function given by (5). Measurements
were done on 10x10, 20x20, and 40x40 lattices with

periodic boundary conditions. The 10x10 lattice showed

only an =0.05% finite-size correction to the energy; thus

quite accurate estimates can be made on rather small
lattices. We performed our simulations on fifty indepen-
dent lattices in parallel, first equilibrating for T Monte
Carlo steps (MCS) per spin and then measuring every
MCS for T MCS. The heat-bath algorithm was used
with single-spin flip updates here. For 20x20 lattices
and T=256, for example, the energy measurement had
statistical error (1 standard deviation) of one part in 10 .
In principle, we could perform a more thorough search
by allowing all the K(r) to vary, calculating dE/dK(r),
and going downhill in this parameter space to find the
minimum. It might be useful to see how much lower one
could drop the energy with this procedure.

The long-range correlations in (10) suppress long-
wavelength fluctuations of the z component of the uni-

form magnetization. This suppression is presumably
present in the true ground state and appears to be impor-
tant in the attaining of a low energy: Letting only the
three nearest-neighbor interactions, K(1), K(J2), and
K(2), vary independently, with all other K(r) =0, we
were only able to lower the energy to = —0.3275.

If we wish to extend (9) while keeping the spontane-
ous staggered magnetization entirely along the x axis
(which is natural with this wave function) then the wave
function should be invariant under a global flip of S'.
Thus the real part of the "correct" H contains only
even-spin couplings. From the above results it appears
that the four-spin and higher-order couplings do not play
a very important role in the attainment of a low energy.
How accurate a wave function can one obtain with only
two-spin interactions in H? This question could, in prin-
ciple, be answered for the linear-chain antiferromagnet
where many properties of the ground state are exactly or
accurately known. "

We have examined the linear-chain (one-dimensional)
antiferromagnet with only nearest-neighbor interactions
and the wave function given by (1), (5), and (9) with
K(r) =kr for all r. In this two-parameter (k, a)
space both the energy and the staggered magnetization
decrease upon going to large k and small cr; the stag-
gered magnetization apparently vanishes for cr 0 at
fixed kcr. The minimum energy of (S; S;+~)= —0.4424
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occurs at ko=4 and 0.1(o50.2 where the staggered
magnetization is less than 20% of its classical value. The
exact ground-state energy for the linear chain is Eo
= —0.44315, while the Gutzwiller wave function has

energy —0.4421." The spin-spin correlation function
(S; S;+ 1 ) for our optimized wave function is between the
estimated exact ground-state values and those of the
Gutzwiller wave function" for all j(8. Note that in

this strong-coupling regime of large k and small o, we

performed spin-exchange Monte Carlo calculations to
speed up convergence of our measurement greatly. Here
we estimated the staggered magnetization from the
long-distance spin-spin correlation function, since (S;)
appears to have strong finite-size effects that lead to an

underestimate.
We now describe our results for the triangular-lattice

case.
The classical ground state of the triangular-lattice an-

tiferromagnet has three sublattices, A, 8, and C, with

spins on each sublattice at an angle of 2ii/3 to those on

the other two sublattices. Nearest-neighbor pairs of
spins are on different sublattices, while each spin is on

the same sublattice as all of its second neighbors at dis-

tance W3 nearest-neighbor spacings. Let us consider a
particular classical ground state with the spins on the A
sublattice oriented along the +x axis, and those on the 8
and C sublattices rotated 2z/3 away from the +x axis in

the x-y plane. As discussed above and by Miyashita, '

this classical state can be written in our form (1) with

,' H, =-,' tri —g;S;—g S;

where the sums run over spins on the 8 and C sublat-

tices, respectively.
Miyashita' considered the wave function with H

=H, +H2 [from (8) and (11)], thus introducing only
nearest-neighbor correlations in H. This wave function
is optimized at K=1.2 with energy E= —0.169 and a
sublattice magnetization i(S;) i of about 85% of the
classical value. The apparently best available estimate
of the true ground-state energy is Eo= —Q. 183~ Q.003
from diagonalization of small clusters by Nishimori and
Nakanishi'3 and Fujiki. ' There does not appear to be a
credible numerical estimate of the sublattice magnetiza-
tion available; preliminary results of a perturbation-
series approach ' similar to that performed for the
square lattice5 suggest that the ground-state sublattice
magnetization is in the vicinity of 50% to 60% of the
classical value.

For the square lattice, as well as any other bipartite
lattice, the amplitudes of the classical Neel-state wave

function in our basis actually have the same relative
phases (signs) as the true ground-state wave function;
only the magnitudes differ. For the triangular lattice,
which is not bipartite and on which the antiferromagnet
is therefore frustrated, this is not the case and so we

want to introduce additional variational paraineters that

adjust the imaginary part of H. Thus the "correct" H
that gives a ground-state wave function on the triangular
lattice with sublattice magnetizations in the x-y plane
will include, in addition to the imaginary single-spin
term in (11), imaginary odd-spin terms. We assuine
that our wave function is invariant under the symmetry
operations of the classical ground state given by (11).
These symmetries include (i) real-space rotation by an-

gle 2z/3 about a lattice point, (ii) real-space reflection
about a row of lattice points, (iii) a real-space transla-
tion by a nearest-neighbor vector and a simultaneous ro-
tation in spin-space by angle 2n/3 about the z axis, and
(iv) a real-space rotation by angle n/3 about a point on
the A sublattice and a simultaneous reflection in spin
space across the x-z plane. We have chosen to include
only the shortest-range three-spin term that appears.
This term couples the nearest neighbors along a "dog
leg":

H3 iL g;,k y;,'kS;SJ'S), (12)

where the sum runs over all distinct triplets of three sites
i,j,k, where both i and k are nearest neighbors of j, and
sites i and k are second neighbors to one another,
separated by distance J3. The sign factor y;Jk =yk~;
= ~ 1 is invariant under rigid translations or rotations in

real space by angle 2z/3 of the three-spin cluster i,j,k,
but changes sign under rotations by n/3 or ii, as dictated
by the above symmetries. If site j is on the A sublattice
and sites i and k are on the 8 sublattice, then we choose

y;,k =+ I; the remaining y;Jk follow. If we add just this
second parameter L, thus letting H=H, +H2+H3 [(8),
(11), and (12)], the variational wave function takes ad-
vantage of it: The minimum energy in the (Ki,L) plane
is at K|=1.45, L =0.25, with E= —0.176 and a sublat-
tice magnetization of approximately 76% of the classical
value. This three-spin term (12) is the only connected
three-spin term permitted by the above symmetries of
the wave function.

Finally, we have optiinized a three-parameter varia-
tional wave function given by (9) with K(r) =kr for
all r, and t ImH =H, +H3. The minimum energy occurs
at K=2.5, cr=l.8, and L=0.25, where E= —0.1789
and the sublattice magnetization is approximately 68%
of the classical value. We feel this last result yields a
useful (strict) upper bound on the triangular-lattice
ground-state energy that can be readily improved by in-

clusion of more terms and more free parameters in H.
Various RVB-type wave functions have been proposed

for the ground-state of the triangular-lattice spin- —,
' anti-

ferromagnet. These wave functions all have energy in

the range —0.158+ 0.005, which is clearly well above
the true ground-state energy. In order to see how poor
these RVB-type wave functions really are, it is worth
noting that the classical energy is —0.125. Thus the
nontrivial quantum part of the ground-state energy is ap-
proximately —0.06, and these RVB wave functions only
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find a little more than half of this. Presumably, much
improved RVB-type variational wave functions for this
triangular-lattice system can be obtained by procedures
similar to those used in Ref. 4.

Finally, we note that the qualitative behavior of the
sublattice magnetization as our variational wave func-
tions are improved is very similar for the square and tri-
angular lattices. Thus similar three-parameter wave
functions yield sublattice magnetizations of roughly 70%
of the classical value in both cases. This should be con-
trasted to the linear chain where we know that the
ground state has no sublattice magnetization, " and the
variational wave function with only two parameters dis-
cussed above apparently tries to tell us this by going to
very strong coupling and a sublattice magnetization of
less than 20%. In view of this, and the preliminary series
results, ' it appears that the ground state of the
triangular-lattice spin- —,

' antiferromagnet has long-range
order with a sublattice magnetization not very much less
than that of the square-lattice case.
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