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The calculation of rapidly converging lower and upper bounds to the ground-state energy, Eg, of hy-

drogenic atoms in superstrong magnetic fields (B&1096) has been an important theoretical problem
for the past twenty-five years. Much eA'ort has gone into reconciling the many different estimates for E~
predicted by an assortment of techniques. On the basis of recently developed eigenvalue moment
methods, a precise solution involving rapidly converging bounds to Eg, for arbitrary superstrong magnet-
ic field strengths, is now possible.

PACS numbers: 03.65.Ge, 02.30.+g, 31.15.+q

In earlier works Handy and Bessis' defined a moment
method for generating rapidly converging lower and

upper bounds to the eigenvalues of strongly coupled,
singular quantum mechanical systems. In succeeding
works ' the general moment method was made more
flexible through a reformulation in terms of the theory of
linear programming. In this paper we apply these tech-
niques to one of the more important theoretical quantum
physics problems of the past quarter century: the quad-
ratic Zeeman effect for superstrong magnetic fields
(8~10 6). Our analysis is relevant because prior re-
sults have been unsatisfactory in defining a convincing
theory. Indeed, an assortment of approximate tech-
niques have been used including variational methods,
Pade resummation analysis, numerical integration,
order-dependent conformal transformations, and virial-
theorem Hellman-Feynman analysis. ' Despite these ef-
forts, the significant variation in ground-state-energy es-
timates, as cited in Table I, led to little confidence in

ascertaining the correct theory. The very nature of the

eigenvalue moment method will permit us to solve this
problem preciselyI

The importance of our obtaining accurate eigenenergy
estimates through narrow bounds is motivated by the re-
sults of Avron, Herbst, and Simon"' which establish
the logarithmic relation for the "binding energy,

"
e, in

terms of the magnetic field, 8 (atomic units are used
throughout; note that then 8 =1 corresponds to
2.35x10 6).

e =8/2 E(Z =1,8)—
(2)

Clearly, very good precision in the energy, E, is required
in order to attain satisfactory precision in the measure-
ment of large magnetic fields. This is an immediate con-
cern in astrophysics and solid-state research. ' '

In atomic units, the relevant Schrodinger equation for
spinless hydrogenic atoms (atomic charge Z) in a uni-

TABLE I. Moment-method bounds for the ground-state binding energy, e B/2 E, of the-
quadratic Zeeman effect for hydrogenic atoms.

Lower
bound
for e

Upper
bound
for e M D~

Variation in

literature (Ref. 9)
Estimate'

from Ref. 9

2
20

200
300

1000

1.022 213 8
2.215 325
4.710
5.34
7.55

1.022 214 2
2.215 450
4.740
5.39
7.85

ll
11
10
10
9

75
70
66
66
55

0.61105 & 6 & 1.0224
2.051 & e & 2.2153
4.28 & ~ & 4.72904
5.04 & ~ & 5.355
6.11585 & e & 7.64

1.022 2139( ~ 6)
2.2153(~ 11)
4.725( ~ 25)
5.355( +'35)
7.64(+ 8)

'Figures in parentheses (+ ) refer to accuracy estimates on the last digits.
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form magnetic field B is

[——,
' ~+ —,

' B'(x'+) ') Z/—r E—]~ =0. (3)

Because of the scaling relation E(Z,B)=Z E(1,B/Z ),
it will suffice to only consider the case Z = l.

In keeping with the theory developed in Ref. 1 we first

need to obtain a moments equation for the system in Eq.
(3). Afterwards we will make use of the fundamental
facts: The bosonic ground state must be nonnegative'
and have finite moments. ' Throughout this work, "non-
negative" refers to a function which is positive on a sub-

set of nonzero measure and zero elsewhere.
The realization of a moments equation combined with

the nonnegative character of the desired solution will

define a true moment problem. As is well known, the
traditional moment problem is concerned with the neces-

sary and sufficient constraints that a set of moments
must satisfy in order that they correspond to a nonnega-
tive function. ' By utilizing these constraints in a man-

ner mandated by the "missing-moment" character' of

the moment equation (to be explained) we can define a
hierarchy of relations which will rapidly bound the phys-
ical energy value.

One convenient representation within which to obtain
a moments equation is aff'orded by the parabolic coordi-
nate space transformation

g=r —z &0, q=r+z &0. (4)

e(r, z)=exp[ —,' B(r —z —)—(2e)' ~z ~].

Implementing the parabolic coordinate transformation
we get

In addition, it will be more convenient to work in terms
of the function p((, rl) =+(g, rl)exp( Burl/4—). Function
transformations such as these are not arbitrary. They
must preserve nonnegativity and insure that the trans-
formed physical solutions correspond to uniquely bound-
ed configurations. To achieve this, minimal knowledge
of the asymptotics of the wave function is essential. For
the present case we have

a, (g8,p)+ a„(~a„p)+ ,' Bg~(a,p—+a„p)+pl ,' (E+ —,
' B—)((+g)+Z] =0.

Note that the reflection symmetry for the ground state" %'(r, z) =0'(r, —z) becomes an exchange symmetry
p4. n) =p(n, &).

The two-dimensional Stieltjes moments are defined by

p(n, rn) = dg drip "q p(&, ri)

The application of g"ri to both sides of Eq. (5) and the performance of the necessary integration by parts yields the
moment equation

n p(n —l, m)+m p(n, m 1)—
~z [Bn+c]p(n, m+ I) —

2 [Bm+e]p(n+ I,m)+Zp(n, m) =0. (6)

It is clear that a "star-nearest neighbor" relation is defined by Eq. (6). In addition, from the previously defined ex-
change symmetry one has p(n, m) =p(m, n).

It is simple to show that once e and the moments p(0, 0),p(1, 1), . . . ,p(M, M) are specified, all the moments
p(n, m) satisfying n+rn (2M+1 are determined. We designate all the diagonal moments [p(m, m) ~0~ m (~] as
missing moments.

The finite-difference moment equation is linear and homogeneous. The latter allows us to choose the normalization

g p(k, k) =1,
k 0

(7)

which guarantees that the missing moments are bounded within the unit hypercube. The linear nature of Eq. (6) to-
gether with Eq. (7) immediately leads to a linear dependence on the unconstrained missing moments [p(0,0) is elim-
inated],

M

p(n, m) =ME(n, m;0)+ g ME(n, m;k)u(k),
k=1

Jl

where u(k) = p(k, k), and the ME's are energy-dependent coefficients readily obtainable from the moment equation. A
fuller discussion of the relevant formalism is given in Ref. 3.

It has been proved elsewhere that the necessary and sufficient conditions for p(g, ri) to be nonnegative on the quad-
rant g, g )0 correspond to

M

g u(k) ( —) g C ' (i j )~ME(l+i~+iqj~+jq k)C ' (i j )qk=1 p.v

DM(gg C ' (i j )~MF(i+if, +iqj~+jq, 0)C ' (ij )q, (9)
p, q =1
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u (k) ( 1, for 1 (k (M. (io)

This is our starting polytope (i.e., a convex subset bound-

ed by intersecting hyperplanes). Note that within the
theory of linear programming it is usually assumed that
the independent variables, u(1 —M), are positive.

We now define a fast "cutting" procedure by which to
determine if there does not exist a nonlinear missing-

where DM ( (M+1)(M+2)/2, l =0, 1, and the C's are
arbitrary. The coordinate pair sequence (i,j )i, =(it„jt, )
is ordered in terms of increasing sum i+j, and increas-
ing j: (0,0)i, (1,0)2, (0, 1)3, (2,0)4, (1,1)q, (0,2)6,
(3,0)7, . . . . The dimensionality, DM, insures that only
those M~'s corresponding to the first M missing mo-
ments are considered.

The re!ations in Eq. (9) correspond to linear inequali-
ties involving the missing moments u(1 —M) as indepen-
dent variables. The structure of Eq. (9) is of the stan-
dard linear-programming form, Au & B, where the rec-
tangular matrix, A, and vector, B, are generated by the
arbitrary vector coefficients, C.

For fixed E and M, the preceding inequalities (un-

countably infinite in number) will either have a missing-
moment solution subset, 4', or not. In the former case, it

can be shown that 1 must be bounded and convex, and

correspond to intersecting nonlinear hypersurfaces. Our
objective is to partition an arbitrary energy interval

(keeping M fixed) and determine at each energy point
whether or not 4' exists, thereby also determining if the
associated energy is physically possible or impossible, re-

spectively. In this manner, converging lower and upper
bounds to the true physical energy can be obtained.

The direct implementation of the previously described
program is clearly impossible given the uncountably in-

finite number of linear-inequality constraints. However,
it is intuitively clear that any nonlinear convex subset,
such as 1, can be arbitrarily approximated within the
circumscribing envelope of a finite number of appropri-
ately chosen intersecting hyperplanes. Indeed, S's non-

existence would require finding a finite number of linear-

inequality hyperplanes that satisfy Eq. (9) and yet do
not envelop a common interior missing-moment subset.
We now describe a procedure for achieving this.

Assume that the number of missing moments, M, is

fixed. Let E be also fixed at some arbitrary value. Con-
sider the missing-moment normalization condition in Eq.
(7). It defines for us the initialization inequalities

moment subset, S, satisfying all of Eq. (9), for fixed E
and M. The procedure to be described is inductive. As-
sume that there exists a missing-moment polytope solu-
tion subset, P, for the linear-inequality relations

k=1
(i2)

We want to cut the polytope solution of Eq. (11) into
a much smaller region that better approximates I (if it
exists). To do so we first locate a "deep" interior point.
Contrary to the prescription defined in Ref. 3 we will

take as our deep interior point the center of the largest
M-dimensional sphere that is inscribed within the po-
lytope P. To find this we add a "slack" variable, R, to
the inequality relations in Eq. (11):

g A(l, k)u(k)+R (B(l), l (L
k=1

There are now M+1 independent variables [the u(k)'s
and R]. We define R to be our "objective" function and
use any standard linear-programming code to optimize
the objective function. This will give us the location of
the center of the maximum inscribed sphere, up, and the
associated radius, Rp. It is simple to prove that for a
properly normalized A matrix (i.e., unit vectors for the
rows) the optimal R value corresponds to the largest in-

scribed sphere.
Let us define the matrices

MI"'(p, q) = g ME(l+i, +i ,j +j;k')u()(k), (14)
k 0

for 1 (p,q (DM, and l =0, 1. Note that up(0) =1. For
each I value determine as many as possible linearly in-

dependent vectors, C, ' [with components C„' (ij )~,
p =1, . . . , DM] satisfying

(CIl)
(
M(i)

(
C(i))( () (is)

The index v is chosen sequentially and satisfies v& I.
[Eq. (11)]. With the assumption that solutions to Eq.
(1S) exist, the coefficients

g A(l, k)u(k) (B(l), I (I.,
k=1

which also include Eq. (10). From the theory of linear
programming, the solution set must be convex. It is as-
sumed that each row of the rectangular matrix 2 is nor-
malized as follows:

D

A(v, k) = —gg C, ' (i,j )~ME(l+i~+iq,j~+jq;k)C, ' (i,j )q,
p, q =1

define inequalities that violate the moment-theorem constraints in Eq. (9), for missing-moment values in a neighbor-
hood of u0..

g A (v, k) [up(k) +Su (k)] & B(v),
k=1
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where B(v) = —A(v, 0).
The original polytope, P, can be decomposed accord-

ing to P =P' U C, where the subset C satisfies Eq. (17)
as well as Eq. (11). Supplementing the original L linear
inequalities in Eq. (11) with the A(v k)'s and B(v)'s
[A(v, k) =A(v, k)/(A. iA, ) and B(v) =B(v)/(A. iA.)],
we obtain an updated set of linear inequalities that define
the polytope P'. The subset C, containing the center
point uo, is discarded by our cutting procedure.

The preceding inductive procedure is repeated until ei-
ther no solution(s) to Eq. (15) can be found or the po-

lytope is wiped out; thereby we conclude that the associ-
ated energy value is physically possible (up to order M)
or impossible, respectively.

The results of our analysis are given in Table I. We
also quote various estimates predicted by other methods.
Our rigorous bounds confirm and improve, in an abso-
lute manner, the estimates predicted by Le Guillou and
Zinn- Justin.

The moment method is a fundamentally simple and

precise eigenvalue technique. Many problems have been
solved, some of which have been cited here. Among
these is the related problem of the spherically symmetric
quadratic Zeeman potential discussed in great detail by
Bessis, Vrscay, and Handy. ' Bearing in mind that typi-
cal linear-programming problems in economics and oper-
ations research involve hundreds of independent vari-
ables (i.e., missing moments), we expect that the present
methods will be relevant to the few-body problem.
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