4*f*-Band Magnetism in CeFe₂

Olle Eriksson,⁽¹⁾ Lars Nordström,⁽¹⁾ M. S. S. Brooks,⁽²⁾ and Börje Johansson⁽¹⁾

⁽¹⁾Condensed Matter Theory Group, Department of Physics, University of Uppsala, S-751 21 Uppsala, Sweden

⁽²⁾Commission of the European Communities, Joint Research Centre, European Institute

for Transuranium Elements, D-7500 Karlsruhe, Federal Republic of Germany

(Received 16 February 1988)

We explain the anomaly in the lattice constants of the series CeFe₂-CeNi₂ quantitatively in terms of 3d-4f hybridization rather than a valence change. CeFe₂ is calculated to be magnetic and is the first Ce compound for which self-consistent energy-band calculations yield the correct total moment $(2.4\mu_B)$ formula unit) including a contribution of $-0.4\mu_B$ from the 4f electrons. The calculated magnetization density and spin-resolved density of states, which are unique to itinerant-electron theory, may be verified in detail by magnetic form-factor and spin-polarized photoemission measurements.

PACS numbers: 71.25.Pi, 75.10.Lp

The electronic structure of Ce and its compounds is a controversial subject. The standard model for 4f electrons in the rare-earth metals and their compounds is that an integral number of 4f electrons are localized on each rare-earth ion. This applies to both normal rare earths, where one 4f configuration of given occupation is stable, and to mixed-valent cases, where fluctuations between two 4f configurations with different integral 4f occupations take place. Thus electronic phase transitions in Ce and some of its compounds are often described in terms of either the Pauling-Zachariasen promotional model¹ or the Kondo lattice model,² both of which are consistent with the standard model of the rare-earth ion in solids. This is in sharp contrast to the way itinerantelectron theory, based upon local approximations to density-functional theory, has been successfully used to calculate the cohesive and magnetic properties of delectron transition metals.³

However, the application of the standard model to some Ce systems has been questioned on thermodynamic⁴ and structural^{4,5} grounds, the best known example being the α - γ transition in Ce metal. Ab initio energyband calculations yield approximately the correct lattice constant and paramagnetic ground state for α -Ce⁵⁻⁷ and CeN,⁸ but it is not generally accepted that this constitutes enough evidence for the itinerancy of the 4f electrons in these systems.

A convincing demonstration, at both bulk and microscopic levels, that the 4f states in Ce can form energy bands in some circumstances requires an *ab initio* calculation which not only yields known bulk ground-state properties correctly but also predicts microscopic quantities, preferably densities, that unambiguously arise from 4f itinerancy and can be measured. Since the charge density is not easily measured, we need a Ce compound with magnetic 4f electrons as the spin density is more accessible to experiment. CeFe₂ is such a compound and, as we shall show, neutron diffraction and spinpolarized photoemission are the experiments. The cubic Ce M_2 Laves-phase intermetallic compounds (M = Fe, Co, Ni) have anomalously small lattice constants compared with those of the corresponding compounds of all other rare earths. This is illustrated in Fig. 1 where we have plotted the lattice constants of the trivalent rare-earth RM_2 compounds by giving Gd and Pr as examples, and including "trivalent cerium" which was extrapolated from data for the trivalent rare earths. The lattice constants decrease monotonically from RFe_2 to RNi_2 , as they do for the YM_2 compounds. Also plotted are the lattice constants of the Ce M_2 and U M_2 series both of which are anomalous with a minimum at ACo_2 .

FIG. 1. The full and dashed lines connect experimental lattice constant data for the AM_2 systems (A = U, Ce, Y, and Gd; and M = Fe, Co, and Ni). The filled squares are the calculated lattice constants for Ce M_2 systems (present work) and we have included the results of earlier calculations (Ref. 9) for UM_2 systems for completeness.

We have made self-consistent linear muffin-tin orbital¹⁰ calculations for the CeM_2 compounds in the same manner as described elsewhere.⁹ The zero-temperature equation of state emerges quite naturally from such calculations in the atomic-sphere approximation,¹¹ and from it the calculated lattice constants which are also shown in Fig. 1. They agree with the measurements to within 0.5% and reproduce the anomalous minimum for CeCo₂. The minimum originates from 3d-4f hybridization, which gives rise to an earlier filling of the bonding bands than for a localized 4f rare-earth compound. If the 4f electrons were localized there would be no 4f contribution to the calculated equation of state; when we remove this contribution from our results the calculated lattice constants are close to the curve labeled "trivalent cerium." Thus itinerant-electron theory yields the correct lattice constants for the CeM_2 series.¹²

It has until now been necessary to explain the volume anomaly between CeCo₂ and CeNi₂ in terms of a valence change from 4 to 3.4.^{13,14} However, L_{III} -edge measurements¹⁵ indicate a constant valence of about 3.3 across the CeFe₂-CeNi₂ series. We find a 4*f* occupation number of about 1.15 for the three compounds, in agreement with the latter observations, and explain the volume anomaly quantitatively in terms of 3d-4f hybridization—thus resolving the problem.

The magnetic properties of the CeM_2 systems are similar to the corresponding YM_2 systems—CeCo₂ and CeNi₂ being paramagnets and CeFe₂ having an ordered moment—except that YFe₂ has a larger total moment¹⁶ $[2.9\mu_B/\text{formula unit (f.u.)}]$ than CeFe₂ $(2.3\mu_B/\text{f.u.})$ and a much higher Curie temperature (545 K compared to 235 K). The calculated densities of states (DOS), N(E), and inverse of the Stoner parameter, I, for the three CeM_2 compounds are shown in Fig. 2. Only for CeFe₂ is the Stoner product¹⁷ $IN(E_F)$ greater than 1, yielding itinerant-electron magnetism, and we obtain the magnetic instability in agreement with experiment. CeCo₂ is an enhanced paramagnet since the Stoner product is 0.95. Our calculated linear specific-heat coefficients, γ , are 14.7 and 10.5 mJ/mol K² for CeCo₂ and CeNi₂, respectively, compared with the measured values 18 of 21 and 11 mJ/mol K².

The spin-projected state densities, spin densities, and spin moments of CeFe₂ were then obtained from selfconsistent spin-polarized calculations. Neither the partial Ce-4f nor partial Fe-3d state densities are displaced rigidly by polarization—a consequence of the changes in hybridization discussed below. We could not, therefore, have obtained the present results without a complete energy-band calculation. The calculated total spin moment of $\mu_s = 2.16\mu_B/f.u.$ is composed of antiferromagnetically coupled moments of $1.43\mu_B$ per Fe atom and $-0.70\mu_B$ per Ce atom. The measured¹⁹ total moment is $2.3\mu_B/f.u.$ but in the absence of neutron-diffraction experiments there is no measured decomposition. The calculated Fe moment is almost entirely of 3d character,

FIG. 2. Calculated state densities from self-consistent linear muffin-tin orbital calculations for CeM_2 systems. The horizontal lines are the inverse Stoner parameters. The Fermi energy is at zero.

whereas for Ce it is an almost equal mixture of $4f(-0.4\mu_B)$ and $5d(-0.3\mu_B)$ contributions. Although it is not central to our argument we have checked the importance of relativistic effects upon the moment by adding spin-orbit coupling to the linear muffin-tin orbital Hamiltonian and iterating to self-consistency as we have previously done for U compounds.²⁰ The result was that we obtained small but not negligible orbital contributions of $\mu_l = 0.08\mu_B$ to the Fe-3d moment²¹ and $\mu_l = 0.15\mu_B$ to the Ce-4f moment. The spin contributions were changed slightly to $\mu_s = 1.41\mu_B$ for Fe and $\mu_s = -0.72\mu_B$ for Ce. The calculated total moment became $2.41\mu_B$, in agreement with experiment.

To the excellent agreement between itinerant-electron theory and experiment for the lattice constants of the CeFe₂-CeCo₂ systems, not least the minimum at CeCo₂, we have added a new feature for a Ce compound — agreement on the value of the total moment of CeFe₂. Further, the nature of the magnetism at the Ce site is uniquely associated with 4f-band magnetism.

In RM_2 systems in general, the M-3d states and R-5d states hybridize strongly to form bonding and antibonding bands. When a moment develops at the M sites the energy of spin-up 3d states is lowered, reducing the 3d-5d hybridization for the spin-up states. The opposite effect occurs for the spin-down states and the induced 5d spin density is therefore antiparallel to the 3d spin density.²² Thus, if we take TbFe₂ as the best known example, the 5d electrons polarize antiparallel to the 3d electrons, and, through a local ferromagnetic interaction, the spin of the 4f electrons aligns with that of the 5d electrons. In Tb this effect is reinforced by an orbital 4f contribu-

FIG. 3. (a) Magnetic form-factor analysis. The calculated form factor of Fe is normal. The normal (4f) form factor of Ce is marked Ce³⁺ (Ref. 23) and contains a large orbital contribution. The calculated Ce form factor of Ce in CeFe₂ is marked Ce(Calc) and is composed of 4f and 5d contributions which add to give Ce(Calc). All form factors, except the latter two contributions, are normalized to ease comparison. The dashed curve close to Ce(Calc) is the calculated spin-only Ce form factor. The orbital contribution is therefore almost entirely quenched. (b) Spin-state density analysis. The calculated total (spin-up minus spin-down) state density as a function of energy in CeFe₂. Also shown are the *integrated* local spinstate densities for Ce and Fe. The Fermi energy is at zero.

tion parallel to the spin. However, our calculated 4f moment antiparallel to the 3d moment in CeFe₂ is actually an anomaly in a light rare earth where localized 4f electrons normally have a larger orbital component of the moment antiparallel to the spin component, resulting in a total moment parallel to the 3d moment. The anomaly is due to the quenching of the orbital 4f moment by band formation and is a definitive prediction of the present theory.

The calculated form factors of the magnetization density at the Fe and Ce sites are shown in Fig. 3. The Fe form factor is normal. We have plotted the form factor for localized 4f states²³ for comparison, from which it is obvious that our calculated Ce form factor is anomalous since itinerancy has almost totally quenched the orbital 4f moment, even when spin-orbit coupling is included in the calculation. Therefore the Ce 4f electrons have acquired another property that is normally associated with itinerant 3d electrons, and it is measurable.

The spin (spin-up minus spin-down) state density, and the integrated Fe and Ce spin-state densities, are also plotted in Fig. 3. At higher binding energies the Fe spin-state density dominates but both the Fe and total spin-state densities reverse sign close to the Fermi energy where the Ce and Fe polarizations are actually *parallel*. The observation of this spin reversal in a spin-polarized photoemission experiment would be an excellent test of the present theory.

The authors are grateful for discussions with G. H. Lander, M. Wulf, and K. H. J. Buschow. This work was partially supported by the Swedish National Science Council and the Bank of Sweden Tercentenary Foundation.

¹W. H. Zachariasen, quoted by A. W. Lawson and T. Y. Tang, Phys. Rev. **76**, 301 (1949); L. Pauling, quoted by A. F. Schuck and J. H. Sturdivant, J. Chem. Phys. **18**, 145 (1950); B. Coqblin and A. Blandin, Adv. Phys. **17**, 281 (1968); R. Ramirez and L. M. Falicov, Phys. Rev. B **3**, 2425 (1971); L. L. Hirst, Phys. Rev. B **15**, 1 (1977).

²J. W. Allen and R. M. Martin, Phys. Rev. Lett. **49**, 1106 (1982); M. Lavagna, C. Lacroix, and M. Cyrot, Phys. Lett. **90A**, 210 (1982).

³V. L. Moruzzi, J. F. Janak, and A. R. Williams, *Calculated Electronic Properties of Metals* (Pergamon, New York, 1977); V. L. Moruzzi, A. R. Williams, and J. F. Janak, Phys. Rev. B **15**, 2854 (1977); O. K. Andersen, J. Madsen, U. K. Poulsen, O. Jepsen, and J. Kollar, Physica (Amsterdam) **86–88B**, 249 (1977).

⁴B. Johansson, Philos. Mag. 30, 469 (1974).

⁵H. L. Skriver, Phys. Rev. B **31**, 1909 (1985).

⁶D. Glötzel, J. Phys. F 8, L163 (1978).

⁷B. I. Min, H. J. F. Jansen, T. Oguchi, and A. J. Freeman, Phys. Rev. B **34**, 369 (1986).

⁸W. E. Pickett and B. M. Klein, J. Less Common Met. **93**, 219 (1983); M. S. S. Brooks, J. Magn. Magn. Mater. **47–48**, 260 (1985).

 9 B. Johansson, O. Eriksson, M. S. S. Brooks, and H. L. Skriver, Phys. Scr. **T13**, 67 (1986), and Physica (Amsterdam) **144B**, 32 (1986).

¹⁰O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

¹¹See, e.g., O. K. Andersen and A. R. Mackintosh, in *Electrons at the Fermi Surface*, edited by M. Springford (Cambridge Univ. Press, London, 1979), p. 149.

 12 This is also so for the U compounds where there is a wealth of evidence from magnetic experiments that the 5*f* electrons are itinerant; see, e.g., J. J. M. Franse, J. Magn. Magn. Mater **31-34**, 819 (1983).

¹³J. M. C. B. Oliviera and I. R. Harris, J. Mater. Sci. 18, 3649 (1983).

¹⁴P. Scoboria, A. Harrus, B. Andraka, T. Mihalisin, S. Raaen, and R. D. Parks, J. Appl. Phys. **55**, 1969 (1984).

¹⁵P. Weidner, K. Keulerz, R. Löhe, B. Roden, J. Röhler, B. Wittershagen, and D. Wohlleben, J. Magn. Magn. Mater. **47-48**, 75 (1985).

¹⁶G. Hilscher, J. Magn. Magn. Mater. 27, 1 (1982).

 17 S. H. Vosko and J. P. Perdew, Can. J. Phys. 53, 1385 (1975); J. F. Janak, Phys. Rev. B 16, 255 (1977). The multiband version of the Stoner criterion is not ideal. However, calculations with small imposed moments show that the paramagnetic state is locally stable both for CeCo₂ and CeNi₂.

¹⁸M. A. Sa, J. B. Oliviera, J. M. Machado da Silvia, and I. R. Harris, J. Less Common Met. **108**, 263 (1985).

¹⁹K. H. J. Buschow and J. S. van Wieringen, Phys. Status Solidi **42**, 231 (1970).

²⁰M. S. S. Brooks, and P. J. Kelly, Phys. Rev. Lett. **51**, 1708

(1983).

 $^{21}\mu_l = 0.07$ has been observed by neutron diffraction for the related LuFe₂ Laves-phase compound by D. Givord, A. R. Gregory, and J. Schweizer, J. Magn. Magn. Mater. **15–18**, 293 (1980).

²²The present discussion is valid because the total number of *d* electrons does not fill the bonding bands. The hybridization under discussion is probably responsible for the rapid quenching of the moment by substitution of Co impurities; see, e.g., A. K. Rastogi and A. P. Murani, in *Proceedings of the Fifth International Conference on Valence Fluctuations, Bangalore, India, 1987*, edited by L. C. Gupta and S. K. Malik (Plenum, New York, 1987); S. B. Roy and B. R. Coles, J. Phys. F **17**, 215 (1987).

²³C. Stassis, C. K. Loong, B. N. Harmon, and S. H. Liu, J. Appl. Phys. **50**, 7567 (1979).