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Shape of Fractal Growth Patterns: Exactly Solvable Models and Stability Considerations
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Fractal, dendritic patterns with invariant distributions which are harmonic measures are represented
by Julia sets of polynomial mappings. The equipotential lines around such patterns are obtained, leading
to analytic estimates of the minimal and maximal scaling exponents of the f(a) function of the harmon-
ic measure. These and physical stability arguments rationalize the shapes of diA'usion-limited aggre-
gates.

PACS numbers: 68.70.+w

Fractal growth patterns appear in a variety of related
problems, like electrodeposition, ' colloidal aggregation,
dielectric breakdown, 3 and viscous fingering. 4 A use-
ful model for these phenomena is the Witten-Sander
diffusion-limited aggregation (DLA) model. On the
face of it, the DLA model seemed simple, and one could
have hoped for a speedy solution at least in two dimen-
sions. In fact, all attempts at rigorous solutions failed,
repeatedly, and one is not sure what is the exact fractal
dimension of DLA, and even whether there exists a lim-

iting dimension for large aggregates.
A clue to the true complexity of the problem (which at

the early stages was masked by the belief that the aggre-
gates are fully characterized by their fractal dimension)
was obtained from the discovery that the harmonic
measure is a multifractal measure characterized by a
spectrum of generalized dimensions. The harmonic mea-
sure is tantamount to the probability that a random
walker would hit the boundary of the aggregate, and
thus determines (in a yet unfathomed self-consistent
way) its growth and its shape. By a multifractal mea-
sure one means that the measure of any ball of radius I
scales like P(I)-I', but with an a that takes on a range
of values am;„~ a (a,„. How common a value of a is
is measured by the function f(a), which can be inter-
preted7 as the dimension of the subset that supports a
scaling exponent a.

A surprisingly good prediction for the leading singu-
larity (the minimal scaling exponent a;„) is obtained
from the "large wedge" model. Imagining stretching
a rubber band around a DLA grown off lattice in two
dimensions, one finds a rough pentagonal symmetry.
Neglecting now the ramified structure, and calculating
the singularity of an electric field at a wedge of included
angle p=108, one predicts a value for aml„, a~ip 7.
For DLA grown on square lattices, a wedge of 90' leads
to a;„=—,'. [In general, for m major fingers, one pre-
dicts6 am;„=tt/(2tr —P) =m/(m+2). ] A scaling argu-
ment s leads to a prediction for the fractal dimension

Do, Do=i+a;„, and the respective values Dp= 1.71,
Do =1.66 for DLA grown off lattice and on a square lat-
tice seem acceptable. Why a large-wedge model works

so well remained somewhat of a mystery.
On the other hand, the scaling at the fjords (the in-

vaginated regions) is expected to contribute the largest
scaling exponent a,„. How this happens, and whether
there is a relation between a,„and the geometry, is

completely unknown. Simulations fail to yield reliable
information about this range of scaling exponents since
the harmonic measure is so small in the fjords.

The aim of this Letter is to justify the large-wedge
model. The reason that it is itnportant is that once it is

accepted, it leads, via physical stability arguments, to an
estimate of the number of prominent branches that one

expects in a DLA. The number of major tips in a DLA
is determined by a competition between two effects. On
the one hand, if there are too many equally long
branches (the limit of circular symmetry) the Mullins-

Sekerka instability9 sets in to distort the situation in

favor of fewer major tips. On the other hand, if the num-

ber of major tips is too small, the fjords are too open,
and minor branches can grow, increasing the nutnber of
major tips. It was shown by Ball' that a balance can be
obtained, and that if one accepts the large wedge model-,

then the DLA should have an a;„that satisfies the rela-
tion a;„(—,

'
tn —1) =1, where m is the number of major

fingers. Using a;„=nt/(m+2), we find a~;„=0.707 in

good agreement with off-lattice DLA. It thus becomes
crucial to gain a better understanding of why and when

the large-wedge model is expected to work. To achieve it
we introduce and solve a family of exactly solvable mod-

els which exhibit complex ramified fractal objects, with

any desired number of major fingers, whose harmonic
measures can be exactly calculated, and whose spectra of
scaling exponents can be systematically obtained. We
propose that these models can be used to understand
some of the observed properties of growth patterns, that
to us seem important. It is possible to calculate a;„and
a,„, and to relate their value to the geometry. In par-
ticular these models allow us an exact calculation of the
equipotential lines around the (charged) fractal, indicat-
ing why (and when) the large-wedge theory works. They
also allow relating the scaling in the fjords to the
geometry.
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FIG. l. Upper panel: Julia sets of the mappings Z' =Z +C for m =3-6. The C values satisfy (C +C) =C . Lower panel:

f(a) functions of the harmonic measure of the sets in the upper panel, respectively.

The models appear in the study of analytic maps of
the complex plane to itself. Consider the mapping

Zi —Zm+ C

where Z and C are complex. For almost all initial points
in the complex plane, repeated iterations of (1) lead ei-
ther to 0 or to ee. The set of points that remains invari-
ant under (1) is the so-called Julia set. " The Julia set
can be easily obtained by our solving either for the (un-
stable) periodic orbits of (1) or for one of the fixed
points Z =Z™+C,and finding the preimages (Z
—C)'t (there are m of them). Each preimage gives
rise to m further preimages, etc.

Julia sets come in a myriad of shapes, ' most of them
irrelevant to us. We are interested in dendritic (and con-
nected) sets. These can be easily found by our choosing
C such that Z=0 iterates to an unstable periodic orbit.
(Such values of the parameter are called Misiurewicz
points. ) Examples of such Julia sets for m =3, 4, 5, and
6 are shown in Fig. 1. The gross features of the shapes
are determined by m in Z +C, i.e., they have m main
branches.

The relevance of these shapes to growth patterns is not

Z(E, E —i, . . . , Ei ) C =R(Eg, E„—i, . . . , Ei ) exp{i&(e..

just in their appearance. The deep statement is that, in

fact, by our starting a construction of the set from any of
its points (say one of the fixed points) and iterating
backwards (Z —C) i™,choosing randomly one of the m

preimages at each step, the distribution of points ob-
tained naturally is a harmonic measure. " '5 In other
words, the rate of visitation of a little ball containing a
piece of the set by the iterates is the same as the proba-
bility that a random walker launched at infinity would
hit that ball. The advantage here, however, is that we
can properly encode the set via symbolic dynamics'6'7
and therefore calculate all the scaling properties sys-
tematically.

The symbolic encoding is done as follows: Write the
fixed points of Z + C as Z* =

i
Z

i exp(ip ). The
fixed point with the smallest positive p* is denoted in the
first generation by Z(0). Set now Z* —C =R
&exp(i8 ). The preimages of the fixed point are denot-
ed by

Z(ei, 0) =R"t exp{i[8'+2rrei]/mI,

where ei takes on m values 0, 1,2, . . . , m —1. If we then
write

the recursive encoding is obtained from

Z(e qi, E', . . . , Ei) F (Z(E, . . . , ei)) ={R(e.. ~ ~ ~ .ei)l" exp{i{()(& &1)+2&& +il™ (2)

The encoding at the nth generation can be written also as Z(t), with t =gls=oeim . We can cover the set in the nth
generation with balls of diameter

l(e. , e. i, . . . , ei) = iz-(t+m ") Z(t) i. —

Denoting as usual' the generalized dimensions of this set by Dv and r(q) = (q —1)D~, we solve for q(r) from

"'= Z (3)
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FIG. 2. Equipotential contours for the electrically charged sets of Fig. 1.

Notice that we have explicitly used the fact that all
preimages are taken equiprobable, '9 to turn the usual
partition function equation PP&/l =1 into (3).

To solve for q(v) we use a powerful tool that was re-
cently developed, '9 which yields mq~'i as the largest ei-
genvalue X(r) of an eigenvalue equation ky Ly. The
derivation, theory, and methods of solution of such ei-
genvalue equations are available in great detail else-
where, and here we shall simply state the equation and
display its solutions.

With use of the functions F,(x) of Eq. (2), the
relevant eigenvalue equation reads

(4)

The function q(r) of Eq. (3) is obtained from
q(r) =logk(z)/logm. Such an equation can be solved,
for example, if we start with a constant function y(x)
and iterate Eq. (4), adjusting k(r) to the unique value
that allows convergence. In all cases considered here,
the second eigenvalue of L is significantly smaller than
k(s), and therefore convergence is achieved very rapidly.
Finally, the function f(a) is found as usual from the
Legendre transform a =Bi(q)/Bq, f(a) =qa —r(q).
The resulting f(a) curves for the Julia sets of Z +C,
m =3-6, are shown in Fig. 1. We believe that they are
very well converged.

Consider first the values of am;„ for m =4-6. These
turn out to be 0.66, 0.71, and 0.75, respectively. Evi-
dently, these values agree very well with the expectation
of a large-wedge model, in which a;„=m/(m+2). To
understand the applicability of a large-wedge model we
draw now the equipotential lines for our ramified frac-
tals. In this case we can obtain a closed-form formula
for the potential. This can be done since there exists for
any map Z'=g, (Z) =Z +C a conformal mapping h,
such that h, og, oh, '=go. For go (i.e., Z'=Z ), the
Julia set is the circle, with the potential go=in I x I. The
potential p, of the Julia set of g, (Z) is ln I h, (x) I. After
some manipulations one can derive" the exact formula

for the potential p, :

y, (x ) = ln I x I + g ln 1+l

Figure 2 displays equipotential contours for the sets
whose f(a) curves are shown in Fig. l. It is immediately
apparent why the large-wedge model works so well for
m =4, 5,6. The symmetries of the fractals are reflected
in the contour lines right up to the very tips of the set
and, in fact, are quite the same as potential lines of
squares, pentagons, and hexagons, respectively. One
should stress that the large-wedge model is not
guaranteed to work. For example, for m =3 it predicts
a~;„=—', . In fact, the am;„of the set in Fig. 1(a) is
a=0.66. The bifurcated nature of the branches cause
the potential lines to curve into right angles locally near
the major tips [see Figs. 1(a) and 2(a)j. The large-
wedge model is expected to work only when the major
branches carry subbranches that do not extend far
enough to perturb the contours of the equipotential lines.

To understand the value of am, „, focus on C values
such that Z=0~ C Z*, where Z is a fixed point.
(Other Misiurewicz points conform to similar considera-
tions. ) We expect a,„ to be the scaling near Z=0,
which is at the root of the branches: The only way for
the iteration to fall near Z=0 is for it to fall near C,
whose preimage is Z =0. The probability to fall within a
distance B„ofC, after n random iterations, scales with n

like the probability to fall within a distance B„of the
fixed point Z . However, this is the probability to see an
itinerary e", which is precisely (1/m)". The size of 8„
scales like 6„=[m IZ I

'] ". With use of p(l)-l',
this estimate yields immediately the scaling exponent in

the vicinity of the fixed point, a*, as a* '=1+(m
—1) log(Z )/logm. (Notice that if this fixed point falls
at the tip of a branch, as it often does, this will be also
a;„,and indeed this estimate is found in such cases to be
excellent. ) Once we fall at a distance 8„ from C, say to
Z =C+8„, the distance to zero in the next iteration is
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(„=(C+b„—C) 'I =6„'I . Since the probability to get
there still scales like (I/m)", we conclude that a,„
=ma*. If a* =am;„, then am»=ma~i, . If not, we can
state that am») ma~;„. This conclusion is borne out by
the numerical results; see Fig. 1.

We thus find that for the family of models at hand,
both a;„and a,„can be estimated directly from the
geometry. The narrower the fjords are, the stronger is
the exponential falloff of the harmonic measure in them.
In the case of m branches where the large-wedge model
works, am;„=m/(m+2) and am») m /(m+2).

Evidently, if the large-wedge model works for the
(rather skinny) sets of Fig. 2, it is no less reasonable for
the (more bushy) DLA. We thus feel that Ball's argu-
ment should be taken seriously. However, the major
consequence of this Letter, in our opinion, is that there is
good reason to believe that there exists an analytic repre-
sentation of DLA in terms of Julia sets of appropriate
polynomial or rational functions of the complex plane,
such that f(a) of the harmonic measure balances the
above mentioned instabilities. A stationary f(a) is ex-
pected to conform with Do= I+a;„, and am, „consider-
ably larger than ma;„(a "phase transition" with

a,„~ cannot be excluded '). We are currently
making an attempt to find such an analytical description
that, if successful, would be reported elsewhere.
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