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An extended scaling description of the cluster size distribution N, (t,k) in time-dependent coagula-
tion-fragmentation processes (k is a small breakup rate constant) is presented as N, (t,k)-s h(sk,
tk ) and its validity is confirmed by computer simulations. This scaling form includes the scaling
description of irreversible and steady-state processes as limiting cases for both short and long times corn-
pared to a crossover time r(k) -k . A mean-field theory is analyzed and its limits of validity are ex-
plored.
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In the kinetics of irreversible aggregation the statisti-
cal description of the clustering processes simplifies as
time progresses and cluster sizes grow. The characteris-
tic cluster size increases algebraically, S(t) t', -and the
size distribution obeys a scaling form. The existence of
scaling has been established in experimental, ' comput-
er, 3 and theoretical studies.

Fragmentation processes become increasingly impor-
tant as clusters grow and the competition between frag-
mentation and coagulation may lead to a steady state.
The size distribution again obeys a scaling form when

clusters are measured relative to their mean size
S(~,k). The value of this quantity is determined by the
breakup constant k, measuring the relative strength of
the rate constants for fragmentation and coagulation re-
actions. For stnall k the characteristic size decreases ac-
cording to a power law, S(ea,k)-k y. The constant k
determines a typical crossover time r(k) -k, specified

by a new exponent x that will be determined below. For
titnes t « r(k) clustering is essentially described by ir-
reversible aggregation, and for t » r(k) by steady-state
aggregation.

Our main goal is to extend these scaling laws to time-
dependent aggregation-fragmentation processes and to
test the scaling description using computer simulations.
We also study the mean-field equations and their range
of validity. We hope that our results will stimulate ex-
perimentalists to obtain the detailed information on real
aggregation-fragmentation systems needed to explore the
kinetic scaling behavior.

The essential characteristics of the clustering reactions
A;+AJ ~A;+~ of clusters of size i and j are controlled
by the dependence of the forward and backward rate
constants, respectively K(i,j) and kF(i,j ), on the sizes
of the reactants or reaction products. More specifically,
K(bi, bj) =b K(ij ) and F(bi, bj) =b'F(i,j). Here we

restrict ourselves to nongelling coagulation reactions
(A. (1) (Ref. 4) and to nonshattering fragmentation re-
actions (a) —1).'

Before formulating the extended scaling laws, we need
to summarize some scaling relations. In irreversible
aggregation the size distribution approaches N, (t)
-s fo(u) where the scaling variable is u=s/S(t)
-st '. In reversible aggregation the size distribution
N, (t,k) also depends on the breakup parameter k and so
does the mean cluster size S(t,k). The steady-state
quantities show scaling behavior if the mean cluster size
is suIIiciently large or k is suIIiciently small, namely
S(~,k)-k as k 0, and N, (~,k)-s f(u) with
u=s/ S( eek)-sky. Mean-field predictions for these
exponents are z=1/(1 —X) and y =1/(2+a —X) where
k and a are the degrees of homogeneity of the reaction
kernels.

Next, we define the "scaling limit" as t, s ee and
k 0 with T= tky fixed. In general, the size distribu-
tion N, (t,k) depends on three arguments; in the scaling
limit it approaches a scaling form depending only on two
arguments. We assume that there exists one characteris-
tic time r(k), which increases as r(k)-k for k 0,
and one characteristic cluster size S(t,k), in terms of
which time and size variables should be measured. For t
much larger than the crossover time r(k) the clustering
process has reached a steady state; for t much smaller
than r(k) one has essentially irreversible aggregation.
This implies the following scaling form for the mean
cluster size:

S(t,k)-k ytit(T); T=t/ (k) =tk"

To match the behavior of irreversible aggregation as
k 0, the function tlr must increase algebraically,
y(T) —T', and must be independent of k, implying
y=zx. To match the steady-state scaling behavior,
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y(T) must approach a constant, y(~) =1. The scaling
form for the size distribution can be written as

10-

N, (t,k) =s 'f(u, T) =s 'h(sk', tk"), (2)

u =s/S(t, k) =sk»/y(tk')

To match the irreversible and steady-state scaling forms
we impose f(u, 0) =fo(u) and f(u, ee) f(u). Here
fo(u) is the "short" time scaling form, valid for t « r(k)
and f(u) is the steady-state scaling form, valid for
t » r(k)."

The extended scaling relations lead to a variety of pre-
dictions that can be verified in experiments and computer
simulations. We first mention data collapse for
k»S(t, k), plotted versus tk" with y=xz, where z follows
from S(t,k) t' -for t «z(k). Furthermore, the scaling
form (1) depends, in general, on two scaling arguments:
u =s/S(t, k) and T=t/r(k) The i.mplied data collapse
for s N, (t,k) plotted versus s/S(t, k) or sk» at fixed
T=tk", as well as for s N, (t,k) plotted versus tk' at
fixed s/S(t, k) or at fixed sk» has been fully confirmed
in our computer simulation.

We have simulated several aggregation processes with
different breakup constants k using the particle coales-
cence model, where an s-cluster occupies only a single
lattice site. If the diffusion coefficient of an s-cluster is

D, =s", the kernel for Brownian coagulation is E(t',j)
=(D; +D, ) =i "+j" with homogeneity degree X = y.
The breakup rate of an s-cluster into an i- and a j-cluster
(i+j=s) is assumed to have the form kF(i,j) =k(i
+j)'. We shall refer to a specific model by the homo-
geneity indices (y, a). The breakup was simulated as in

Ref. 7, where one fragtnent is put on the site of the origi-
nal cluster and the second one on a nearest-neighbor site,
chosen at random. We refer to this implementation of
fragmentation as correlated fission.

Confirmation of extended scaling for S(t,k) is shown
in Fig. 1 through data collapse at four different fission
constants k for the 3D simulation of the (y, a) =(—2,—1) model with diffusion coefficient D, -s" implying a
homogeneity index l =

y
= —2 for coagulation, and with

a fragmentation rate F(i,j)= (i,j)' for correlation
fission. The s and t variables in Eq. (1) are rescaled in
accordance with the mean-field exponents y=l/(2+a
—X) = —,

' and x=(1 —k)y=l. At short times S(t,k)
approaches the small-T or irreversible scaling form
S-t'. This form holds for T=tk & eo 5 where fragmen-
tation has no effect. The measured dynamic exponent,z„=0.34, is in very good agreement with the mean-
field prediction z =1/(1 —y) = —,

' . For e 5 & T & e2 (in-
termediate scaling) S(t,k) crosses over to its large-T or
steady-state scaling form, where coagulation and frag-
mentation are in balance. Furthermore, 3D simulations
for the models (y, a) =(0, —1), (0,0), (0,1), ( —1,0),
and ( —2, —1) all show behavior for the mean cluster
size in very good agreement with Eq. (2). Of course, for
larger k values the time of approach to the irreversible

C/l

CV

Vl

C:
4-

2-

scaling form, say to, may be equal to or even larger than
the crossover time, r(k) =k ", to the steady-state form.
If so, the k"S(t,k) curves do not exhibit small-T scaling.
This happens, for instance, in the model (y, a) =(—1,0)
at k=0.01 where to=20 and r(k) =k =21.

Numerical simulations 3 and theoretical considera-
tions" have shown that above a critical dimension d, =2,
the mean-field equations provide an accurate description
of irreversible aggregation, but below d, spatial fluctua-
tions give rise to new kinetic behavior. Recent simula-
tions of reversible aggregation in the steady state7 indi-
cate that the mean-field prediction for the exponent y,
y 1/(2+a —X), is valid at dimensionality d=l, sug-
gesting that d, & 1 for reversible aggregation. However,
our simulations of time-dependent aggregation with
correlated fission confirm the validity of extended scaling
in one dimension but show that the dynamic exponent is
no longer given by the mean-field exponent z =1/(1 —

A, ).
In all our one-dimensional simulations the results are
consistent with the idea that z=l/(2 —

A, ), y=l/(2+a—X), and x=y/z.
Furthermore, in our 2D simulations, plots of k»S(t, k)

versus T=tk" with mean-field exponents show very good
data collapse for T-~. However, for small and inter-
mediate values of T the slope is changing with k. Here,
data collapse is very much improved by a logarithmic
correction, i.e., by our plotting k S versus k"t/lnt.

The scaling predictions (2) for the full size distribu-
tion have also been compared with the 3D simulation
data for the coalescence tnodels (y, a) =(0,0), (0,1),
( —1,2), (—2, —1), and ( —1,0) with correlated fission
for different k and t values and were fully confirmed by
data collapse at fixed T=tk" for different k and s, or at
fixed u =sk» for different k and t.

We further note that the scaling prediction (2) for the
full size distribution is in conflict with the alternative
scaling Ansatz N, (t,k)-s f(s/S(t, k)) proposed in
Ref. 8, where f(u) depends only on a single scaling ar-
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FIG. 1. Scaling of the time dependence of the mean particle
size S(t) obtained from several three-dimensional simulations
carried out with the particle coalescence model with correlated
fission at four diferent fission rate constants k. Each simula-
tion was carried out starting with 50000 particles of unit mass
on an 80' lattice.
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gument, as opposed to f(u, T) in (2). Their Ansatz is
exact for K=F=const, i.e., in the scaling limit the exact
solution of Blatz and Tobolski5 shows that S(t,k)
=k 't y(tk't ) with y(x) =2(1 —e ")/(1+e ") and
that the size distribution reduces to the above scaling
form with f(x) =4x exp( —2x). However, the alterna-
tive Ansatz is in confiict with the exact result for the
steady-state scaling form in detailed-balance models,
viz. , f(u) =u 't~e "/I (1/y), which depends explicitly on
the fragmentation exponent a through y. The corre-
sponding scaling form fo(u) for irreversible aggregation
cannot depend on a. Furthermore, a scaling form
f(u, T) with a strong T dependence at small u is, in gen-
eral, found in computer simulations of 3D particle
coalescence, if the fragmentation kernel F(i,j) and
diffusion coefficient D, =sz depend on cluster sizes (see
Fig. 2).

The combined process of coagulation and fragmenta-
tion can be described by Smoluchowski's coagulation-
fragmentation equation for the size distribution N, (t,k)
of s-clusters, as given by Eq. (8) of Ref. 7. Fragmenta-
tion rates are proportional to a (small) breakup constant
k. Our setting k=0 yields the ordinary Smoluchowski
equation for N, (t,0) in irreversible aggregation; our set-
ting dN, /dt 0 yields an equation for the steady-state
size distribution N, (~,k) in reversible aggregation. In
the present analysis the breakup kernel is restricted to
the form F(i,j) (i+j)'. The coagulation kernel is
specified through K(bi, bj) =biK(i,j) with A, (1 and
K(ij )-i"j"as j»1. For large sizes, long times, and
small breakup constant k (extended scaling limit), the
size variable may be treated as continuous and the size
distribution is expected to approach the solution
N(s, t,k) of the continuous version of the coagulation
equation. This equation has the exact scaling property
N(s, t, k) =k "N(sk, tk"), valid for arbitrary values of
the breakup constant k, provided the exponents x and y
are chosen as y =1/(2+ a —

A, ) and x = (1 —X)y. The re-
strictions a) —

1 and k(1 guarantee that the exponent
y&0 s

Analysis of the mean-field equation also provides de-
tailed information' about the scaling form of the size
distribution. The results are very different from irre-
versible aggregation. Here we quote only some results
for steady-state scaling that are relevant for our further
discussion; namely, at stnall scaling argument u=s/
S(ae,k) the size distribution is described by the power
law s2N, (ee, k)-u '. The results for r are

r

X —a [case (i)],
r = ~ (1+X)/2 [case (ii)l, (3)

p [case (iii)],

where case (i) is (p & 1+a; A. & 1+2a), case (ii) is

(p & 1+v', X & 1+2a), and case (iii) is (p & 1+a,
p &1+v). The three cases refer to regions in the
jp, v, a]-parameter space that characterize the coagula-
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FIG. 2. Some results from a three-dimensional simulation
with use of the particle coalescence model with uncorrelated
fission. In this case, eight simulations were used. This figure
shows how the scaling function f(u) changes as T tk"
changes from small to large values.

tion (p, v, )j. =p+ v) and breakup (a) processes. The
physical region in the (p, v) diagram is further limited

by the constraints 1(1, v(1, and a & —l. On the bor-
derline between (i) and (ii), where r=l+a, and be-
tween (ii) and (iii), where z 1+v, the exponent
changes continuously and the small-u form of f(u) con-
tains extra powers of logarithms. However, the exponent
z changes discontinuously across the borderline between
(i) and (iii). If the borderline is approached from above
[case (i)] or below [case (iii)], its limiting value is, re-
spectively, r+ =1+v or r —=1+a. The r value on the
borderline is unknown.

In the last part of this Letter the simulation results for
the size distribution are compared with the correspond-
ing mean-field results for Brownian coagulation with a
rate K(i,j ) =i "+j"with X =y(0 and v =0, combined
with fission with a rate kF(i,j) =k(i +j)'. For constant
coagulation kernels (y=0), the results of 3D simulations
for correlated fission are in excellent agreement with the
mean-field results, as has been tested for a=1 and 0.
Next we decrease the mobility D, -s" of the large clus-
ters (y & 0) and perform 3D simulations of the coales-
cence models (y, a) =(—1,0), ( —1, 1), and ( —2, —1)
with correlated fission. In mean-field theory these mod-
els belong to case (iii) of Eq. (3), where the exponent z
equals p =y. Qualitatively, the size distribution has the
same shape as in Fig. 2. The small-T-scaling curve in

our simulations corresponds at small u approximately to
fo(u)-u exp( b/u) of irrevers—ible aggregation. ' The
large-T-scaling curve is very different at small u, viz.
f(u) —u2 '. The exponents 2 —r for the (y, a) models
are measured from the slopes to be 1.9, 2.0, and 3.2, re-
spectively. On the other hand, the corresponding mean-
field exponents are given as 3, 3, and 4, respectively.

To understand these deviations from mean-field theory
we have also performed 3D simulations of the same mod-
els with uncorrelated fission, where the positions of the
two fragments are uncorrelated in the spirit of the
mean-field theory. This was achieved by our leaving one
fragment at the site of the original cluster and putting

2505



VOLUME 60, NUMBER 24 PHYSICAL REVIEW LETTERS 13 JUNE 1988

10

8

z 6
Al

cA

4

0 I I

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2
tn[s/s(t)]

FIG. 3. Scaling collapse of the size distributions obtained
from Monte Carlo simulations of the coagulation-fragmenta-
tion equation of Smoluchowski with a coagulation exponent

and fragmentation exponent a 1. Each simulation was

started out with 2X10' unit masses and the results from
several hundred simulations were averaged for each fission rate
constant (k). Here results obtained from simulations with five

different fission rate constants are shown.

the second one at random anywhere on the lattice. The
resulting exponent 2 —z was then found to be 2.9, 2.9,
and 3.9, respectively, in good agreement with the mean-
field results. Thus, if the mobility of large clusters is

small, spatial correlations created by correlated fission
have long-time effects on the cluster size distribution,
causing a breakdown of the mean-field predictions in its
detailed description of the cluster size distribution.

The asymptotic results in Eq. (3) yield no estimates
for the range of T and u values where these exponents
are relevant. As the available analytical information
from Smoluchowski's coagulation-fragmentation equa-
tion is rather limited, Monte Carlo simulations of this
equation have been carried out with the method of Ref.
7. Within the general class of mean-field models
K(i,j)=(ij ) t and F(i,j)=(i+j)', we performed
Monte Carlo simulations for the parameter values (y, a)=(- —,', -1), (- —,',Q), (-,', —1), (-,',Q), and (-,', 1).
The last three pairs correspond to a coagulation kernel
K= (ij ) 't which belongs to class I (p = —,

' ) of irreversi-
ble aggregation. In Fig. 3 we have plotted Monte Carlo
simulation results for the size distribution in the mean-
field models (y, a) = ( —,', 1). Here the irreversible scaling
form fo(u)-u "has an algebraic tail for u«1 with
an exponent zo =1+1,= —', . At the shortest time avail-

able, T = 2 x 10 ~, the scaling form f(u, T) corresponds
approximately to f(u, 0) =fo(u) and the agreement be-
tween the simulated and analytical values of the ex-
ponent 2 —zo, respectively 0.6 and 0.5, is reasonable. At
the longest available time, T=5 10X, the scaling
function has reached its asymptotic form f(u, ~) =f(u)
for u & e with a slope of 1.7, in good agreement with
the analytic result 2 —z = —', [z = —,', case (iii)]. For still
smaller clusters (u & e ) the tail is crossing over to its
large- T form.

The mean-field model with (y, a) =( —,', —1) is the
only model in our simulations that belongs to case (i) of

steady-state scaling, where z=X, —a =
z . The simulated

value of the exponent z„m = 1.4 is in fair agreement with
the analytic result. It is also the only case in our Monte
Carlo simulations where the exponent z is larger than
unity. As long as z&1 the total numbers of clusters
N(~, k) =QN, (~,k)-k is inversely proportional to
S(~,k)-k . However, if z) 1 we find N(~, k)
—[S(~,k))' . For the model (k, a) =( —,', —1) under
consideration, this yields N(~, k)-k and S(~,k)
—k 2 as k ~. Sorensen, Zhang, and Taylor con-
clude incorrectly that N is, in general, inversely propor-
tional to S.

Our main conclusions are the following: (i) The ex-
tended scaling laws, involving cluster size, time, and
breakup constant, are confirmed in 1D, 2D, and 3D
simulations of the particle coalescence model with fission
and supply strong evidence for an upper critical dimen-
sionality d, =2. (ii) The detailed predictions on the size
distribution (e.g. , exponent z) obtained by analytic and
Monte Carlo solutions of Somulchowski's mean-field
equation disagree with the simulation results for corre-
lated fission, but agree for uncorrelated fission. (iii) For
times on the order of or larger than the crossover time
z(k), the scaling Ansatz of Ref. 8 is, in general, in

conflict both with the results from computer simulations
and with analytic and Monte Carlo results obtained from
Smoluchowski's equations.
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