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Bifurcations to Local and Global Modes in Spatially Developing Flows
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We outline a possible scenario of successive bifurcations to local and global modes on a Ginzburg-

Landau model with varying coefficients. It is shown that self-sustained resonances may appear via a

Hopf bifurcation when the system exhibits a region of local absolute instability which is sufficiently

large. Our findings are in qualitative agreement with experimental observations of spatially developing

flows such as wakes and inhomogeneous jets.

PACS numbers: 47.20.Ft, 47.20.Ky

A sequence of bifurcations to local and global modes is

illustrated on the Ginzburg-Landau equation with vary-

ing coefficients. The results provide a qualitative expla-
nation for the occurrence of hydrodynamic resonances in

spatially developing shear flows such as ~akes and inho-

mogeneous jets where the absolute or convective charac-
ter of the instability mechanism is altered locally as a
function of a control parameter.

Rigorous definitions of absolute and convective insta-

bility have been given in the context of plasma physics

by Briggs' and Bers and similar concepts have recently
been applied to inviscid instabilities in shear flows. ' It
is assumed initially that the basic flow is parallel, i.e., in-

dependent of the streamwise coordinate x. Its linear in-

stability properties can then be formally characterized by
a dispersion relation of the form D[k, co;p] 0, where k,
ro, and p denote the wave number, frequency, and con-

trol parameter, respectively. The parallel flow is said to
be absolutely unstable if the Green's function G(x, t;p)
associated with the operator D[ l 8/Bx—', ta/at', p] is

such that G eo for all x as t ee. Conversely the

parallel flow is said to be convectively unstable if G 0
for all x as t ee. A relatively simple mathematical cri-
terion ' is available to determine the nature of the insta-

bility: The flow is convectively (absolutely) unstable

when the singularities rttp=at(ko) such that [t1to/8k]k,
0 lie in the lower (upper) half co plane. In general, the

points too are branch-point singularities of k(ro). As an

additional requirement, the branches k+(to) and k (ca)
pertaining to each branch point should originate from

distinct upper and lower halves of the complex k plane as

co; =Imrtt is decreased from positive values towards zero.
When the basic flow varies slowly along the stream-

wise direction, the dispersion relation becomes a function

of a slow spatial scale X=p'x, with p'« I, and the pre-

vious concepts then apply locally at each station X. For
many nonparallel flows such as spatially developing mix-

ing layers, "' flat-plate boundary layers, ' and homo-

geneous jets [see Fig. 1(a)], the mean flow is locally con-

vectively unstable everywhere with respect to vortical
fluctuations. In such systems, any initial disturbance is

advected by the flow as it is amplified. The medium is
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FIG. I. Classes of spatiaIIy developing flows. (a) Extrinsic
flows: no resonances. (b) Intrinsic flows: hydroacoustic reso-
nances. (c) Intrinsic flows: hydrodynamic resonances.

extremely sensitive to external coherence forcing' and
the flow can be thought of as a collection of spatially
evolving vortical instability waves of different frequencies
traveling in the downstream direction. Measured fre-
quency spectra are generally broadband. Self-sustained
oscillations do not seem to be possible in this class of
flows although significant feedback effects' could be in-

duced by global pressure fluctuations's present in the
far-field region as sketched in Fig. 1(a).

In contrast, strong self-sustained oscillations can be
obtained when, in the same developing free shear flow,
one introduces a second streamlined or blunt body at a
finite distance downstream [see Fig. 1(b)]. For particu-
lar values of the distance between the two objects, a reso-
nance can be triggered which gives rise to monochromat-
ic acoustic radiation known as wake tones, jet tones, or
edge tones, depending on the specific shear-layer-solid-
body configuration. ' The flow is still locally convective-

ly unstable from the point of view of vorticity fluctua-
tions but the dynamics of the flow is dominated by a
feedback loop [Fig. 1(b)]: The downstream branch con-
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FIG. 2. Linear eigenfunction A ~ (x, t ). Carrier wave:

ReA~(x, t). Envelope:
~
A ~(x, t)

~
. tt' 0.012, cd - —10.

Shape independent of po.

sists of rotational instability waves rolling up into vor-
tices. The interaction between the vortical structures
and the downstream body then generates global irrota-
tional pressure disturbances which travel along the
upstream branch of the loop. Resonance occurs when

vortical shedding at the trailing edge of the upstream
body is in phase with the vertical velocity induced by the
global pressure fluctuations.

There is now increasing experimental and theoretical
evidence that in wakes behind bluff bodies and in in-

homogeneous jets, ' "self-sustained oscillations can also
be produced by purely hydrodynamic means, without the
need for a second downstream body [Fig. 1(c)]. In this
third class of spatially developing flows, the nature of the
instability changes from locally absolute to locally con-
vective at a particular downstream station X,. This tran-
sition allows global oscillations of the separated flow to
develop. It is conjectured that the feedback loop is
made up of temporally growing vorticity waves propaga-
ting in both flow directions. 3 The observed flow is then
the finite-amplitude saturated state associated with these
waves. It is found experimentally that such flows are rel-
atively insensitive to infinitesimal external perturbations:
Discrete frequency spectra are obtained with one or
several fundamental components and their harmonics.
The archetype of such a flow regime is the von Karman
vortex street behind a circular cylinder at low Reynolds
numbers.

The Ginzburg-Landau equation arises in many weakly
nonlinear studies of fluid dynamical systems close to
marginal stability. ' ' It serves as a simple model of
the nonlinear evolution of hydrodynamic instability
waves. ' Furthermore, it is particularly well suited for
our purpose: The associated dispersion relation is en-
dowed with the minimum structure required for an alge-
braic branch point of order 2. In this context, the corn-
plex amplitude function A(x, t) characterizing the spa-
tiotemporal modulations of the marginal wave satisfies

aA aA (, . )r)'A
Bt Bx Bx

—(1+tc„)(A ['A,

where U, p, cd, and c„aregiven real coefficients. 24 Here
the cubic nonlinearity is chosen to be stabilizing as in the
case of a supercritical Hopf bifurcation and in consisten-
cy with experimental results for wakes behind circular
cylinders. The operator (1) linearized around the equi-
librium solution A =0 admits a single temporal mode
tv(k) =too+ (cd —i ) (k —ko), and the corresponding
spatial solution k(co) exhibits a branch point at the par-
ticular value ko —U/[2(cd —i)], too i [p —U [4(1
+icd)]], where the group velocity [dro/dk]k, becomes
zero. For fixed settings of U and cd, the parameter p
determines the nature of the instability as dictated by the
sign of Imtoo. The values p 0 and p pt-U [4(1
+c))] are of special interest. When p &0, the solution
A =0 is linearly stable. In the range 0& p & p, it be-
comes convectively unstable. Finally, the instability is
absolute as soon as Imcoo becomes positive, i.e., when

P &Or
Resonances are now sought in situations where U, cd,

and c„remain constant, but where the control parameter

p is allowed to vary linearly on the interval 0 & x & ~,
according to p go+ p'x with p' & 0. This simple prob-
lem mimics in a very idealized manner the spatially de-
veloping flows depicted in Figs. 1(a) or 1(c). The pa-
rameter p plays the role of a local Reynolds number
based on, say, the local thickness of the wake while po is
analogous to a global bifurcation parameter such as the
Reynolds number based on cylinder diameter. The pres-
ence of the body is very crudely modeled by the bound-
ary condition A(x 0) 0. Furthermore, since p' & 0,
the solution A 0 is linearly stable for sufficiently large
x and we may impose the boundary condition A(~) 0.
This latter feature is consistent with observations of
wakes behind circular cylinders at low Reynolds num-
bers (below 200) which indicate that the von Karman
vortex street decays far downstream.

The linearized Ginzburg-Landau equation for vary-
ing p, together with the indicated boundary conditions,
admits a denumerable set of solutions of the form

y„(x)e ™with

„c-0i[po U'/4(—1+icd)+ [(1+icd)p'] 't'g„], (2)

y„(x)-Ai([ —p'/(I+icd)]'t'x+g„),

where Ai denotes the usual Airy function and g„ its
countable set of zeros. The largest temporal growth rate
Imco„ is obtained for the mode n 1 which therefore
dominates the linear regime. A typical eigenfunction is
represented in Fig. 2. There exists a critical value

p, -p, +(—(t) ~
p'~ 't'(I+cj)'t'cos[-, ' tan 'cd],

(4)

below which all the eigenvalues co„aresuch that Imago„
&0 for all n. In the range po& p, all possible global

modes are therefore necessarily damped. When tto & p,
the temporal growth rate Imce~ becomes positive and a
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supercritical Hopf bifurcation takes place whereby a
complex pair of eigenvalues crosses the real-co axis. As

pc increases above p, the number of modes giving rise to
amplified resonances also increases.

Until now, only global instability concepts on the line

x &0 have been invoked to examine the occurrence of
self-sustained oscillations. For small values of p', how-

ever, one may legitimately apply the WKB approxima-
tion and appeal to local instability arguments. In the
sequel p' is deliberately chosen to be small so as to allow

both local and global descriptions to be relevant. The
coefficient po is used as a control parameter, all other
parameters remaining fixed. In all cases considered,
1+cdc„&0 so that uniform Stokes wave-train solutions
are linearly stable with respect to the Benjamin-Feir in-

stability mechanism. To elucidate the spatiotemporal
development of disturbances, the nonlinear Ginzburg-
Landau equation was solved numerically by finite dif-

ferences, with white-noise conditions.
A simple scenario emerges as po is varied (see Fig. 3).

When pc &0 [Fig. 3(a)], p(x) is always negative and
A 0 is locally linearly stable everywhere. Global solu-

tions are also damped and one concludes that A 0 is

both locally and globally stable. As po crosses zero [Fig.
3(b)], a region of local convective instability develops
close to the origin. This results in the appearance of a
bulge of local growth in the amplitude evolution of the
waves. Ultimately, however, disturbances decay and
A 0 is globally stable. In the range 0& go& p, no
self-sustained oscillations are therefore possible. None-
theless, the system is locally convectively unstable and
the application of a continuous excitation within the con-
vectively unstable region will lead to spatial growth of
fluctuations. Thus the response of the system is seen to
be extrinsic: It depends on the nature of external forc-
ing, in qualitative agreement with what is known of con-
vectively unstable open flows such as boundary layers,
shear layers, etc. The parameter value po 0 may be re-
ferred to as a point of /ocal bifurcation

As po increases above p&, a pocket of absolute instabil-
ity develops near the origin. From (4), one notes that

p, & p&. In other words, the value po p, at which a re-
gion of local absolute instability appears is lower than
the bifurcation value po p, which signals the onset of
global oscillations. Thus there exists a range p, & po
& p, where the solution A 0 becomes locally absolute-

ly unstable but where global resonances cannot be sus-
tained. It is worth noticing that the spatial extent of the
domain of absolute instability can be as large as

xT- —()(—p') 't'(I+cj) 't'cos[ ,' tan 'cd-]

(5)
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FIG. 3. Spatiotemporal evolution of impulse resonance
Im ~A(x, t) ~, as ps increases. p' 0.012, cd —10, c, 0,
U 6. (a) @0&0. (b) 0& go& pr (c) p, & go&. p, . (d)
PO+ Pc-

without there being self-sustained resonances. This re-
gime is therefore characterized by transient local growth
fluctuations [Fig. 3(c)], as in the previous range 0 & po
& Pt.

Finally, when po exceeds p, [Fig. 3(d)], a Hopf bifur
cation to a global mode takes place whereby the solution
A 0 becomes globally unstable: The eigenvalue to& ac-
quires a positive imaginary part and the nonlinear re-
gime is described near p, by the classical Landau normal
form. The system exhibits an intrinsic mode of oscilla-
tion and the effect of small external forcing at an arbi-
trary frequency is likely to be small. For a near-resonant
excitation, the Hopf bifurcation to a global mode is per-
fect. 2 This regime serves as a model of open flows with
a sufficiently large region of absolute instability such as
the von Karman vortex street behind bluff bodies.

We note that the region of absolute instability allows,
for positive values of Imto, a smooth switching' between
the spatial branches k+(t0) and k (co) as x increases.
This is, however, not sufhcient to enforce the boundary
conditions, which are only satisfied for discrete values of
co. Thus the existence of a pocket of absolute instability
is a necessary but not su%cient condition for the onset of
amplified global oscillations. The region of absolute in-
stability must reach a critical size in order for resonances
to occur. These findings suggest that resonant behavior
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in spatially developing flows cannot be attributed solely
to the appearance of a region of absolute instability.

The qualitative scenario outlined above is consistent
with recent experiments on wakes behind circular cyl-
inders and with linear stability analyses of the local
velocity profiles. ' When the Reynolds number NR,
based on cylinder diameter is below a value NR, „ofthe
order of 20 (corresponding in our model to go=0), the
wake is both locally and globally stable. Parallel stabili-
ty analyses indicate that the local velocity profiles first
become convectively unstable at extremely low local
Reynolds numbers of the order of 7 (based on wake
width). Correspondingly, as NR, exceeds NR, „alocal
bifurcation takes place whereby a region of convective
instability appears behind the cylinder. No von
Karman vortex street can be detected, however, unless
coherent external forcing is applied close to the frequen-
cy of the damped resonance. 2 At a critical value NR, ,
of the order of 47, a Hopf bifurcation to a global mode
occurs. The validity of the Landau normal form and the
scaling laws which it implies when

~ (NR, —NR, , )/
NR, , ~

&&1 have been verified experimentally. ss Fur-
thermore, when NR, & NR, „

the region of absolute in-
stability coincides approximately with the recirculation
eddies behind the cylinder. At very high Reynolds
numbers, the pocket of absolute instability subsists7 but
the wake is then fully turbulent.

Finally, this investigation suggests that some caution
needs to be exercised when one is seeking frequency-
selection criteria for global resonance in spatially devel-

oping fiows. Various proposals have been put forward
which are all based on local stability arguments. For in-

stance, one may choose as preferred frequency coo, ,„,
i.e., the real part associated with the maximum absolute
growth rate too;,„over the entire domain. ' An alter-
native selection mechanism proposed by Koch leads to
the value of too at p =p„i.e., at the location separating
the absolutely unstable region from the convectively un-
stable one. In the present model, restricted as it is to
varying p(x) only, both local criteria give the same re-
sult: ta1~,1

=U cd/[4(l+cg)]. The exact expression (2)
from global linear theory yields

Rero~ to1,1
—(t(1+cg)'l ( —p') l cos[ —,

' tan 'cd].

Thus local criteria fail to account for the second term
which, in the WKB approximation, is 0((—p') l ). It
therefore appears that the local criterion of Pierrehum-
bert' provides a leading-order estimate of the global fre-
quency. Higher-order terms in the WKB parameter in-
clude the effect of boundary conditions.
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