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Graphic Evidence for Non-Abelian Flux Tubes
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From Monte Carlo calculations of plaquette-Wilson-loop correlations for three-dimensional SU(2)
lattice gauge theory, we give unambiguous graphic demonstrations of the formation of non-Abelian
chromoelectric flux tubes with constant energy density in the region between a pair of static qq sources.
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The formation of narrow tubes of chromoelectric flux
is the hallmark of a theory which is supposed to confine
objects with color charge, as QCD is all but proven to
do. It would be encouraging, as well as useful for more
detailed investigations, to demonstrate the existence and
formation of actual chromoelectric flux tubes. We have
undertaken a laborious computational study of a non-
Abelian lattice gauge theory to demonstrate graphically
chromoelectric flux tubes and to ascertain some of their
properties, such as thickness and the directly associated
string tension (the energy/length in the flux string).
Since we were interested in as convincing a demonstra-
tion as possible, which meant using Wilson loops large
enough to see the inside rather than just edge effects, we

have in this study been forced by already heavy comput-
er demands to limit ourselves to three-dimensional (3D)
SU(2) lattice gauge theory (LGT). Although it is true
that while our study was underway, others' have at-
tempted to look at four-dimensional (4D) LGT, we feel
that the small size of the Wilson loops they considered
produced only suggestive, although indeed very enticing,
results.

Three-dimensional non-Abelian gauge theory is of in-

terest not just as a nontrivial model for the more realistic
four-dimensional theory, but also because in the high-
temperature limit4 3D QCD is the effective theory of 4D
QCD. The 3D theory has been investigated both in the
continuum4 and on the lattice. 5 Like its 4D counterpart,
the lattice theory is believed to confine for all values of
the bare lattice coupling g, and confinement is presumed
to persist in the continuum limit. However, because the
coupling g has dimensions of L ' and the theory is su-

perrenormalizable, there is not sharp transition from
strong to weak coupling, unlike in the 4D case. Hence
the string tension falls off much more slowly with de-
creasing g (power rather than exponential falloff), and so
it should be much easier to extract results valid in the
continuum limit from the lattice. Indeed, standard
Monte Carlo studies of the string tension o for 3D

SU(2) LGT have been done, with general agreement
about the behavior of o although with some dispute
about the details. It should be noted that because we are
in three dimensions, the perturbative Coulomb potential
V(R) between a quark and antiquark has a logarithmic
behavior, V(R)~lnR. However, this is not what is
meant by confinement. We mean, instead, the nonper-
turbative linear potential, V(R)ceR, which results from
an area-term falloff of the Wilson loop.

The continuum version for a three-dimensional non-
Abelian pure gauge theory (what is often called 3D
QCD) is defined by the standard action for the gauge
fields A„'(x),

S= —,
' d xF„'„F'nn",

with

(3)

The partition function is then

Z =QdU, ,„exp( —pS w),
n, p

(4)

where p=4/g a. In the naive continuum limit a~0,
since we can use the exponential map between group and
Lie-algebra elements,

U =exp(igaA„r ),

We have Sw

(5)

F =8 A' —tI A'+gf' 'A A' (2)

In our case the f'""s are the structure constants for the
group G =SU(2).

Regulating the theory by means of cubic, Euclidean
lattice with spacing a, we define the usual Wilson action
in terms of the link variables U„„EG, where n labels the
sites and p the three directions:

Sw I 2 X Tr(Un, nUn+n, vUn+n+v, nUn+v, —v)—
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The energy density C(x) of a gluon field in the presence of a static qq pair relative to the ground state without quarks
is given by

@(x)=(qq I r ~E'(x)+&'(x)) I qq) —« I l ~E'(x)+&'(x) i I 0). (6)

It should be noted that in (2+1) dimensions, the mag-
netic field is a scalar. Knowing |'(x), we can obtain
directly the string tension by integrating over what
would have been the area per unit length in three spatial
dimensions, but what here becomes just the line per unit
length perpendicular to the string:

„8dl = [eng/l j = (x. (7)

In order to measure the energy densities, we have to be
able to put a static qq pair in our lattice system in

a gauge-invariant way. Unfortunately, the approach
adopted by Sterling and Greensite6 for the Abelian
theory, namely using the so-called polymer formulation
combined with individual Wilson lines for the quark and
antiquark, does not work in the non-Abelian case since
the resulting action becomes complex and hence unsuit-
able for standard Monte Carlo simulations. Hence, we
have been forced to use the more laborious method of
putting a Wilson loop in the lattice in order to have a
gauge-invariant, static qq source. So we have really
measured chromoelectric flux surfaces or volumes, i.e.,
what the tubes sweep out in time.

To measure the energy densities we make use of the
fact that the plaquette (P) measures the internal energy.
So we pick out one direction arbitrarily as Euclidean
time, and measure the plaquette-Wilson-loop correla-
tions, subtracting off the corresponding plaquette ener-
gies in the absence of the Wilson loop W:

C, (x) =(Po;(x) W)/(W),

eb(x) =(P 2(x) W)/(8'),

Cg(x) =(P„),
e$(x) -(P„).

(8)

(10)

These quantities correspond to the color electromagnetic
energy densities in the weak-coupling limit. Then with

gE =@E +gE, (12)

the total energy density for the 3D Euclidean lattice
theory is

@(x)=M (x) —8 (x)] —Mg(x) —@$(x)). (13)

the loop and not just measure the energy where the
charges are situated. Hence, we must make the loops
large enough to have the central region of the loop well

isolated from the edges. It is unfortunate fact that large
Wilson loops do not become observable until weak cou-

pling because of their exponential suppression. Because
of the resulting small signal, as well as from general re-
quirements, we have performed all of our measurements
with rather high statistics.

The details of the computations will be published else-
where. Suffice it to say here that we worked with a 16'
periodic lattice and employed the 120-paraineter ico-
sahedral finite subgroup of SU(2) in a Metropolis algo-
rithm with multiple hits. We did our plaquette-loop
correlation measurements only on square Wilson loops of
six 6x6 and 8x8 for P 8, and 7&&7 and 8&&8 for P=7.
Each 100 measurements were based on approximately
2500 iterations and we were especially careful to elimi-
nate autocorrelations. The total number of measure-
ments as well as the average value measured for each
Wilson loop are listed in Table I.

Since our main goal was a graphic demonstration of
non-Abelian chromoelectric flux tubes, our main results
are the type of three-dimensional graph presented in Fig.
1 which is for the 7 & 7 loop at P -7. We are plotting the
chromoelectric energy density CE, (x), Eq. (8), as mea-
sured by plaquette-loop correlations for plaquettes paral-
lel to the plane of the Wilson loop, which by definition
lies in the 01 plane. s We see in all cases a large, sharp
rise in the electric energy where the loop is located and
then, more significantly, the flux stays well above back-
ground in the middle of the loop. This dramatic signal
of confinement is present even in the most recalcitrant
example, namely the 8x8 loop for P =7, where the poor
signal-to-noise ratio required 15000 measurements to
achieve a picture like Fig. l.

To make clearer what is happening inside the loop, we
have devised plots which average the data for plaquettes
in a similar environment due to the symmetry of the
loop. Thus as shown in Fig. 2, which is for the 8x8 case,
the four inside densities are averaged together and la-

Note that the change of sign compared to (6) is the re-
sult of the Wick rotation to Euclidean space.

We would like to do our measurements as deep in the
weak-coupling regime as possible in order to be close to
the continuum limit. But there is another reason for our
going to large P. In order to measure the chromoelectric
flux between the quark-antiquark sources on the Wilson
loop, we want to be able to see what is happening inside

8.0
8.0
7.0
7.0

Loop

6x6
8x8
7X7
8x8

Measurements

800
5000

10000
15000

0.0924 ~ 0.0011
0.0233 ~ 0.0011
0.0191 +' 0.0010

0.007 34 ~ 0.00076

TABLE I. Number of measurements and (8').
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FIG. 1. Chromoelectric energy density parallel to 7x7 loop
at P 7.0. The units are arbitrarily scaled and have only rela-
tive significance.

FIG. 3. Averaged energy density for 7x7 loop at P=7.0
The units are arbitrarily scaled and have only relative
significance.

beled 1. Then the densities for the next concentric
square "ring" are averaged and called 2, and so forth.
Note that because of the periodicity of the lattice, this
procedure is exhausted at label 8. We repeat the averag-
ing for each plane parallel to the loop and label the
planes 1 through 16, with 1 being the plane of the loop.
An example of such a plot, again for the 7x7 loop, is
given in Fig. 3. It is quite clear that the chromoelectric
flux has become essentially constant and is considerably
above background in the region between the qq sources,
as we expect for a linearly rising potential. To bring this

point into sharper focus, we have plotted the average
densities just in the plane of the loop in Fig. 4. The
essential constancy of the chromoelectric energy density
inside the loop is quite striking in the P 7 data, with

perhaps the suggestion of some Coulomb admixture in
the P 8, 8x8 data. It is also clear that smaller loops
could not provide very definitive results.

We also remark that the plots like Fig. 3 give us an in-

dication of the thickness of the flux tubes or strings. It
appears to be between 3 and 5 lattice units depending on
the size of the loop and P. The significance of this thick-
ening of the string will be discussed elsewhere. 7

We have also calculated the string tension directly

@=8, 8x8 @=7, 8x8
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FIG. 2. Method of averaging and labeling convention for
energy density in a plane parallel to an 8 x 8 loop.

FIG. 4. Averaged energy density in the plane of the loop for
the four cases studied. Errors are smaller than the width of the
line except where indicated. The units are arbitrarily scaled
and have only relative significance.
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using Eq. (7). Unfortunately, to use this method and not

get large errors, because of the delicate subtraction of
the no-source energy density 8, e.g. , Eq. (13), one
needs to know the expectation value of the Wilson loop
to much higher precision than is feasible. So it is not yet
clear if there is a significant difference between the
directly determined string tensions and those obtained by
fitting, as was seen in the Abelian case.

In conclusion, we have presented for the first time
unambiguous graphic demonstrations that chromoelec-
tric flux really is confined to narrow regions of space for
non-Abelian gauge theory, thus confirming a host of pre-
dictions and the suggestive evidence of other studies.
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