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We develop a scaling theory for linear fragmentation processes, for general breakup kernels character-
ized by a homogeneity index A > 0. We discuss the existence of scaling, and show that the scaled
cluster-size distribution ¢(x) generally decays with the scaled mass x as x ~2exp(—ax*), as x— . For
small x, ¢(x) approaches the log-normal form, exp(—alIn?x), if the kernel has a small-size cutoff, and a
power-law form in the absence of a cutoff. We also show that A <0 leads to a shattering transition. Fi-
nally, we outline the essential features of a nonlinear fragmentation process.

PACS numbers: 05.40.+j, 82.20.—w, 82.70.—y

Fragmentation is a relatively ubiquitous phenomenon
that underlies processes such as polymer degradation, '~
breakup of liquid droplets,’ and the crushing of rocks.*>
Recently, there has been renewed interest in fragmenta-
tion®8 which has paralleled recent progress in the com-
plementary process of aggregation.’™'> Much of the
theoretical work is based on the description of fragmen-
tation by a system of linear rate equations, i.e., it is as-
sumed that the breakup process is driven by an external
source. For certain classes of models, both scaling solu-
tions and a number of exact solutions have been dis-
covered.®” Some of the exact solutions are quite com-
plex, however, and a universal classification of the kinet-
ics in terms of qualitative aspects of the microscopic pro-
cess is still lacking.

Our goal, in this Letter, is to provide such a classi-
fication through a scaling formulation. We find that the
asymptotic form of the cluster-size distribution at large
size is strongly determined by the homogeneity index of
the breakup kernel. In the small-size limit, we also ob-
tain the general conditions on the kernel which gives rise
to a log-normal cluster-size distribution, a form charac-
teristic of a random multiplicative process, and which
arises in many rock crushing processes.'>!* We also dis-
cuss the criterion for the existence of a ‘“shattering”
transition, in which mass is lost to a phase of zero-size
particles. Finally, we introduce a nonlinear fragmenta-
tion model, which is driven by repeated collisions be-
tween fragments. Scaling solutions of the rate equations
are obtained, which reveal the differences between the
linear and nonlinear processes.

In the rate-equation approximation, linear fragmenta-
tion is described by the integro-differential equation®®
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Here c(x,?) is the concentration of x-mers at time ¢,
a(x) is their overall rate of breakup, and f(x | y) is the
rate at which x is produced from the breakup of y. We

consider homogeneous kernels for which a(x) =x?, thus
defining the homogeneity index A. Homogeneity also im-
plies that f(x |y) has the form y ~'6(x |y). These re-
strictions on the kernels encompass virtually all cases of
physical interest. Mass conservation imposes the condi-
tion [§xb(x)dx=1, and the average number of frag-
ments produced upon particle breakup, [§b(x)dx, is
taken to be finite.

To analyze Eq. (1), we write the familiar scaling An-
satz for the cluster-size distribution,®~1?

c(x,t)~s "2p(x/s), 2)

where s is the typical cluster mass. The substitution of
Eq. (2) into (1), and the definition of £=x/s, yield the
scaling equations

wl20(8)+£¢'(€)]
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where @ > 0 is the separation constant, and the overdot
denotes the time derivative. Equation (4) immediately
yields s~¢ ~' for A>0. To find the asymptotic solu-
tion to Eq. (3), we convert it to a relation involving the
moments of ¢(£) by multiplying both sides by £* and in-
tegrating over all &, Thus in terms of the moments of
the scaling function, m, = f° x*¢(x)dx, and the reduced
breakup kernel, L, = f§ x*b(x)dx, we obtain

L,—1

where explicit dependence on the kernel is contained only
in L,, and we are free to choose a normalization where
mo=m,;=1.

Before analyzing this moment relation, we discuss the
general conditions for which the scaling Ansatz, Eq. (2),
is valid asymptotically. This justification rests on the
linearity of the rate equations, which dictates that ¢ (x,z)
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must decay exponentially in time, or slower, for any
value of x. This corresponds to moments which have a
smooth, nonsingular, time dependence. On the other
hand, for A <0, Eq. (4) predicts that there is a singulari-
ty in the time dependence of the moments at a finite
time. This contradiction implies that the necessary con-
dition for the existence of scaling is A > 0.

The fact that A > 0 is a sufficient condition for the ex-
istence of scaling is supported by all existing exact solu-
tions and by simulation results, and we therefore assume
this fact. However, it is possible to give a plausibility ar-
gument for the existence of scaling solutions for A > 0.
This argument is based on our first writing a “bare” mo-
ment relation directly from the rate equations, by de-
fining M,=J¢" x%(x,t)dx, and then converting Eq. (1)
into the moment relation

M,=L,— 1M+, 6)

On the other hand, from the scaling Ansatz of Eq. (2),
the moments can be written as

l+a~t(l—a)/)_’ (7)
which indeed is a consistent solution of Eq. (6). Furth-
ermore, by using the fact M, =1, one can show that Eq.
(7) is the only asymptotic solution to Eq. (6), for a set of
equidistant a values, a=1—kA. If we further assume
“smoothness,” wherein the form of M, for arbitrary a
interpolates smoothly between the moments defined on
the discrete set, then the scaling solution substituted in
Eq. (6) generally leads to (5), as t — oo,

To determine the behavior of ¢(x), we now use Eq.
(5) to compute the asymptotic form of the reduced mo-
ments for a set of equidistant a values, and then use the
properties of the inverse Mellin transform to reconstruct
the functional form of the scaling function. In this
reconstruction, we assume that the leading behavior of
m, ‘“corresponds” to the leading behavior of ¢(x). For
example, if for some ¢(x) there exists a value a. such
that m, is finite for a < a. and is infinite for a > a., then
it is interpreted that ¢(x) asymptotically behaves like the
power law,

M,~m.s ~

o(x)eex 7%

Although this is not mathematically precise, this corre-
spondence is supported by available exact solutions, and
it appears to be correct for most physically realizable

fragmentation processes. In cases where such a
correspondence does not apply, the comparison of the
limiting forms of m, can still be a valuable measure of
the closeness of the corresponding ¢(x)’s. Therefore, in
the following discussion of the asymptotic behavior of
¢(x), it is understood either that this assumption is im-
plied, or that moments which have the same leading be-
havior will correspond to ¢(x)’s that are “close.”

For the large-x behavior of ¢(x), we require m, for
large values of a. To obtain this latter quantity, we take
a=kA, with k an integer, and iterate Eq. (5). Use of the
fact that mo=1 leads to

=1

(®)

n=1 n=1

k—1 k—1
mip=w* "I (mx—1) [1‘1(1 —Ly)

The asymptotic behavior of my; can now be obtained for
a very large class of kernels which, for x near 1, i.e., the
limit of production of large fragments, have the form

b(x)=b(1)+0((1—x)*) )

where (1) =0 and p >0 are constants. Use of this in
Eq. (8) and the employment of Stirling’s approximation
for the factorial function yields

a/la () —11/a— l/Zaa/l’

(10)

me— c(w/e)

for a— oo, where c is a constant.

This form for m, is universal in the sense that the
breakup kernel enters only in ¢, o, and b(1); this univer-
sality will enable us to deduce the general form of ¢(x)
in terms of the m,’s. To accomplish this, we consider
first a simple exactly solvable “test” system for which the
kernel satisfies Eq. (9). For this case, the exact connec-
tion between the moments and the scaling form of the
cluster-size distribution can be found. The universal
form of the moments then guarantees that this connec-
tion extends to arbitrary kernels which satisfy Eq. (9).
The test system is one in which there is a uniform proba-
bility of fragment sizes in any breakup event, corre-
sponding to b(x) =2. The exact solution for the cluster-
size distribution? can be written in the following scaling
form, in the long-time limit:

2M
ra+2/-)

where JM is the mean mass in the initial condition. The
corresponding moments are

¢ (x)exact exp(—x*), an

a/A
exact __ M atl - 1 1/A=1/2_alr
me kl‘(l+1/k)r : const X v a a®*, (12)
To compare Eq. (10) with (12), we first rewrite Eq. (10) in terms of the shifted variable, ' =a+5(1) =2,
Me— ¢ "(w/e) ™ (a") A= 12(g") e =¢" (o) [a+b(1)—21/xm;iaﬁl)_2, (10)

where the second half follows by direct comparison with Eq. (12). By using the Mellin transform property that if the
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moments m, are obtained from ¢(x), then the moments

a —(“+"+”ma+a are obtained from x°¢(ax), we find that
¢(x) has the asymptotic form
o(x) ~x?M~2exp(—axt), x— oo (13)

The generic case b(1) =0 includes kernels with power-
law decays, exponential decays, and finite cutoffs for x
near 1.

This result for ¢(x) can be extended to general homo-
geneous kernels by our noticing that the controlling fac-
tor in Eq. (10), a®?, is responsible for the controlling
factor, exp(—ax*), in ¢(x). This feature is universal
for any homogeneous kernel, regardless of whether or
not condition (9) is satisfied.

For small x there is a lesser degree of universality, as
might be anticipated, since the small-mass tail is not
influenced by clusters of the typical size. We do find,
however, that there are two possible generic scaling
forms for ¢(x) at small x, whose applicability depends
on whether or not the moments L —, exist for all a. Con-
sider first kernels that are cut off at small fragment sizes,
i.e., b(x) decays faster than exp(—x ~*) for some u >0
as x— 0, so that L, is finite for all . To study the
small-x limit of ¢(x), we now choose a=1—kA in Eq.
(5), and iterate it to arrive at the analog of Eq. (8),
namely,

(14)

k k -1
mi—n=0 [T -n—1) an] .
n=| n=1
As an illustrative example, consider a sharp cutoff on
the kernel, i.e., b(x) vanishes for x < xo, with 0<xg
<1. Then L -, has the controlling factor x¢ ¢ for large
a, and the corresponding controlling factor of m —, is

Inxg ! ,
a” |,

> (15)

which is the Mellin transform of the log-normal distribu-
tion. Thus by taking the inverse Mellin transform, we
predict that the controlling factor of ¢(x) is

A
21lnxo

¢>(x)~exp[— (lnzx)], x— 0. (16)
More generally, we can show that for an arbitrary ker-
nel, the controlling factor in m —, will generally diverge
at least as fast as exp(ca?), and this implies that ¢(x)
will decay as expl — (In2x)/4c], or slower, as x — 0.

Let us now consider kernels for which there is no
small-size cutoff, in a single fragmentation event. This is
typified by kernels with a power-law decay for small x,
i.e., b(x)~x". In this case, it follows from Eq. (14) that

J

9

atc(x,t)=--c(x,t)J:)Wi((x,y)c(y,t)dy+j:)wdzfxmk(y,z)B(x [y,2)c(,0)e(z,t)dy.

m, diverges whenever L, diverges, and this occurs for a
less than a critical value a., which is less than 0, since
my is finite. For a close to a. we keep only the leading
term in Eq. (5) to give

Mg+

mg =Lam~constxfx b(x)dx. an
This implies that ¢(x) coincides with 5(x), so that
o(x)~x", x—0. (18)

Because clusters of indefinitely decreasing size are
produced in fragmentation, there is the possibility of a
shattering transition, in which mass is “lost” to a phase
of zero-mass particles. This is reminiscent of gelation,
where the mass of finite-size clusters is lost to a phase
consisting of an infinite gel molecule. Both gelation and
shattering are signaled by the condition M; <0. As first
discussed by McGrady and Ziff® in the context of a par-
ticular fragmentation model, shattering was found to
occur when A <0, and in this case, scaling breaks down.
We now show generally that A <0 is a necessary and
sufficient condition for the existence of shattering.

To locate the shattering transition, we examine Eq.
(6) in the limit a— 1. Since L, approaches 1 from
below as a— 11, while M,>0, M, <0 in general. In
the limit a— 1, the existence of shattering depends only
on having M+, +. diverge faster than 1/¢ as e— 0. By
definition, M, is nondecreasing as a decreases, at fixed
time. This fact, together with M < oo, implies that M,
can diverge only for @ <1. Thus a necessary condition
for shattering is A <0. It is also a sufficient condition
because if the converse were true, then from Eq. (6),
M+, would go to zero at a finite time, which contra-
dicts the fact that c(x,¢) cannot vanish at a finite time.

To summarize, scaling provides a comprehensive de-
scription for the cluster-size distribution of linear frag-
mentation processes. For large x, ¢(x) has the universal
form exp(—ax*), where A > 0 is the homogeneity index
of the overall breakup rate, while for small x, ¢(x) may
either have a log-normal tail, for kernels with small frag-
ment cutoff, or a power-law decay for kernels with no
cutoff. We now wish to extend this scaling description to
a new fragmentation model, in which repeated collisions
between clusters, as might be envisioned in crushing, are
the source for fragmentation.!> This collision-driven
process is inherently nonlinear, as the collision rate var-
ies as the square of the particle concentration (at low
concentrations). We map out basic features of this mod-
el, and determine essential differences with linear frag-
mentation.

The rate equations are

19)

The first term accounts for the loss of x because of collisions of x-mers with the remaining particles in the system, at a
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rate specified by the homogeneous collision kernel,
K(ax,ay)=a*K(x,y). The second term accounts for
collisions in which a y-mer and a z-mer produce x-mers
at a rate specified by the breakup kernel, B(x |y,z).
Mass conservation imposes the condition y=/[ 3x
xB(x|y,z)dy, and also B(ax|ay,az)=a°B(x|y,z),
with @ = — 1, if the kernel is homogeneous.

With use of the scaling Ansatz, Eq. (2), in Eq. (19),
the typical size s obeys §s ~*= — . Thus s vanishes in a
finite time for A <1, in contrast to linear fragmentation,
where s vanishes in a finite time only for A <0. To
determine the cluster-size distribution, we make the
simplification wherein the particle undergoing breaking
always splits into two equal halves, so that the mass x
can be written as x=2"", with n an integer. This
equal-splitting feature still retains the essential non-
linearity of the collision-induced process, while being
simple enough to be tractable. By numerical integration
of the rate equations, together with the use of consisten-
cy arguments, it appears that the scaling holds for A
> A, with A, =0 if both particles break upon collision,
—1 <A, <0 if only the larger particle splits, and A, =1
if only the smaller particle splits. Generally, the scaling
regime coincides with the range of A for which there is
no shattering transition.

In the scaling regime, the asymptotic solutions to the
rate equations are,

27expl — 2~ A=D1 arger splits,
2*M/¢, smaller splits.

c,,(t)~{

By matching to the scaling form of the cluster-size distri-
bution we then obtain

exp(—x*2)/x 2, both split,
o(x)~ {exp(—x*)/x2, larger splits,

x ~U - smaller splits,

as x — oo. Thus in contrast to linear fragmentation, the
cluster-size distribution at large masses can have a
power-law tail. This feature should be useful in
differentiating whether linear or nonlinear mechanisms
underlie a particular fragmentation process.
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