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Quantum Correlations: A Generalized Heisenberg Uncertainty Relation
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A theoretical result for correlated quantum systems is presented which leads to a noise commutation
relation and a generalized Heisenberg uncertainty relation. These relations imply an inherent and una-
voidable extra noise in quantum measurements beyond that already included in the Heisenberg lower
bound. These relations lead directly to model-independent lower bounds on inherent noise, useful in a
variety of applications, including balanced homodyne detection and quantum optical linear amplifiers.

PACS numbers: 03.65.Bz, 42.50.—p

Recent advances, particularly in the area of quantum
optics, have caused heightened interest in the fundamen-
tal limitations on the achievable accuracy that may be
obtained in the measurement of quantum-mechanical
systems. In this Letter we present a quantum correlation
result and a noise commutation relation for correlated
quantum systems. The measurement of quantum-system
observables requires the correlation of these "micro-
observables" and the measuring apparatus (usually a
macroscopic system). The noise commutation relation is

applied to quantum measurement leading to a general-
ized Heisenberg uncertainty relation. The generalized
Heisenberg uncertainty relation yields a lower bound on
the inherent, irreducible, extra noise in quantum mea-
surements, which is due to the measuring process itself. '

For example, Arthurs and Kelly introduced theoretical-
ly a complete joint measurement of noncommuting ob-
servables which showed the state preparation of "unbal-
anced, " or "squeezed, " states and exhibited the extra
noise implied by the generalized Heisenberg uncertainty
relation.

To indicate the utility of the noise commutation rela-
tion, two different applications are discussed. First, an
application of the generalized Heisenberg uncertainty re-
lation indicates how a model-independent noise limit for
balanced homodyne detection can be obtained. A
different application is discussed in which the noise com-
mutation relation is applied to develop a model-
independent lower bound for the inherent noise of a

where Gy is a real constant. We require that the quan-
tum correlation have a form such that the "tracking" ob-
servables match, on average, the system observables.
That is,

Tr(PN, ) =0. (2)

quantum optical linear amplifier.
We start with two quantum systems, 1 and 2. The

overall quantum system is represented on the tensor
product Hilbert space H Hl H2. The observables on

the individual spaces are represented by the operators
A~, B|,. . . , and. . . , Yq, Zq where operators are indicat-
ed by a caret, and the subscripts indicate the Hilbert
space associated with that operator (we use the Heisen-
berg picture throughout this paper). These definitions
may be extended to observables on the tensor product
space written as A Ai812 and Y I~SY2 and so on,
where li and 12 represent the identity operators on H~
and H2. The state of the system is given by the statisti-
cal operator p, a nonnegative Hermitean operator,
defined by

P =Pi P2,
with Trp =1 (i.e., the two systems are independent).

Now consider a system observable A =A|SI2. We al-
low a quantum correlation of this system observable with
another observable Y. Further, we define a "noise opera-
tor" Ny, which indicates how closely Y "tracks" A:

Ny =Y—GyA,

1988 The American Physical Society 2447



VOLUME 60, NUMBER 24 PHYSICAL REVIEW LETTERS 13 JUNE 1988

and

G Yo'A + o'k),

oz =G)ok+ o'k, .

(4)

A

Calculating the expectation of the commutator [Ny, Nz],
we are led to the following result:

Tr(p[Ny Nzl )

=Tr(p[Y, Z]) GyGz Tr(p[A, B]). (6)

In the following sections we demonstrate some conse-
quences of these results (4)-(6).

Following the treatment of von Neumann' and, more
recently, Wigner, we discuss the quantum measurement
from the viewpoint of measuring pairs of observables.
Using the formalism described above, we associate the
quantum-system observables that are to be measured at
a specific time (e.g. , t=0) with system 1, and the
measuring apparatus (or meters) with the system 2. In
order to effect a measurement, the system observables
C=C~12 and D D~12 must be coupled to the
measuring apparatus represented by the observables
R 1~R2 and S I~SS2 for an interval of time t
(Here the C's are identified with the A's above, and the
R's are identified with the Y's above. ) A necessary con-
dition for a meter R on H2 to make a measurement of a
system observable C on H~ is that the meter tracks the
system observable uniformly, for all initial states p~ of
the system; that is, that [following Eqs. (1) and (2)
above] (Ntt &

=&Ng& =0, where

Ntt =R(t) —GttC(0), Ns =S(t) Gs D(0), —

and where the G's may be identified as the amplification
gain between the system observables and the measuring
apparatus. At some point in the measurement, informa-
tion is passed to a macroscopic or "classical meter. " We
assume now that R and S are macroscopic measuring
apparatus (i.e., [R,S]=0), measuring C and D. Start-
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Now, if (2) is true uniformly for all states p~ (for fixed

p2), then it can be shown' that

Tr(pNyC) =0 (3)
A A

for all Hermitian operators C=C~SI2 on H. That is,
for tracking quantum correlations [in the sense of Eq.
(2)l, the noise operator Ny is uncorrelated with all sys-
tem operators C on H. We will show that this simple re-
sult has interesting physical consequences.

If we assume an initial system state p and a pair of
system observables A and 8, which are tracked by ob-
servables Yand Z, i.e.,

Tr(pNy) =Tr(pNz) =0

uniformly for all state vectors p~, then using (3), it can
be shown that the rms deviations of Y and Z, o y and az,
are given by

ing with the noise commutator [Ntt, Ng] we have from
Eq. (6)

I Tr(p[N~, Nyl ) I I GLGy Tr(p[A, B])I.

Squaring this and using results (4) and (5) yields

o'k &k o'Fo'k +~N„ak~+ o'Po'k~+ cd &k~.

(7)

We define the normalized meter operators by X R/GR
and q=S/Gs. From the Heisenberg uncertainty rela-
tion, we have that agog ~ —,

'
I tr(p[C, D]) I and,

similarly, og„a$, ~ —,
' Itr(p[Ntt, Ns]) I . Using these

bounds and substituting into (8), we have

~i'a.'~ I Tr(p[C, D])
I
', (9)

which is a generalized Heisenberg uncertainty relation in

that the right-hand side of Eq. (9) is 4 times the Heisen-
berg uncertainty lower bound for C and D which ad-
dresses the uncertainty in the system observables, and
not in the measurement. This additional noise is funda-
mental and unavoidable, since it depends on the mea-
surement process itself and not on the apparatus details;
further, it has important physical consequences, which
will be indicated below.

To demonstrate the power of these results, we briefly
address two applications: first, a limit on balanced
homodyne detection; second, an application to determine
a model-independent noise limit of a quantum optical
linear amplifier.

An example of the type of paired observable measure-
ment indicated in Eq. (9) above occurs in balanced
homodyne detection of an optical signal which is used in

the experimental detection of squeezed states of light,
and coherent communications. For balanced homodyne
detection, the observables C and D can be associated
with the electromagnetic field quadratures, with

C= —,
' (a+at); D= ——,'i(a —at),

where a and a are the annihilation and creation opera-
tors of the field mode and with [C,D] —,

' i By app. lica-
tion of the generalized Heisenberg uncertainty relation
(9), the lower bound on the uncertainty product for the
measurement, cryo„~ 4 can immediately be deter-
mined. A model-specific analysis with 100% quantum
efficiency confirms the generalized Heisenberg uncer-
tainty result.

Another example, an application of the noise commu-
tation relation, is the calculation of the lower bound on
the inherent noise produced in a quantum optical linear
amplifier. In the theory of the quantum optical linear
amplifier, gain is produced through the coupling of an
optical mode to, for example, an inverted population of
atoms. We let a and a represent the annihilation
and creation operators for a mode with the Hamiltonian
H @to(a ta+ —,

' ). Since these are not Hermitian
operators, we form the pair P (h /2')' (ta+at) and
Q- —i(h/2')' (a —a ) so that [Q,P] ih, and the
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energy is just (8)= —,
' ((P )+ co &Q ). In this case, Q(0)

and P(0) can be associated with A and B above, and the
amplified signals with gain G, Q(t) and P(t), can be as-
sociated with Y and Z above. In the optical linear
amplifier the output signals track the input signals in the
sense of (I) and (2) above. Then Q(t) =JGQ(0)+Ng
and P(t) =JGP(0)+Nt and with the fact that the

[Q,Pj commutator is time invariant the Hamiltonian

may be written as

&0& =G&P(0))+G&Q(0))+&E &,

A

where E„ is the extra noise present, above the gain
amplified input noise. Then from the noise commutator
(s),

a~2, at2v, ~ —,
' h'I G —1 I

'. (10)

This lower bound is consistent with model-specific analy-
ses: for example, Yamamoto and Haus' and Glauber.

Heisenberg, through his fatnous microscope Ge-
dankenexperirrtent, showed that experiments may in
herently affect the precision with which observables can
be determined, a radical departure from classical phys-

A

The extra noise is, however, just E„2 (crtv ro +otv, ).
This is minimized when the two terms on the right-hand
side are equal, and thus from (10) we have that the
model-independent, extra noise in the quantum optical
linear amplifier is just

(E„&~ —,
' n~ I G —11.

ics. However, the uncertainty principle only addresses
the necessary dispersion in the system observables prior
to the measurement. We have shown that a lower bound
that is 4 times the Heisenberg bound on the variances is
the best that can be obtained when the measuring ap-
paratus is considered as well. The noise commutation
result and the generalized uncertainty relation can be
used in a variety of applications to obtain fundamental
lower limits in a model-independent manner.

A more complete discussion of these results, including
derivations, will be presented elsewhere: E. Arthurs and M. S.
Goodman, to be published.
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