Density-Functional Theory for Superconductors

L. N. Oliveira,^(a) E. K. U. Gross, and W. Kohn

Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (Received 7 January 1988)

A density-functional theory for superconductors at arbitrary temperature is described. It leads to equations of the Kohn-Sham type, which incorporate exchange and correlation effects into the Bogoliubov-de Gennes equations for an inhomogeneous superconductor. Further, this formalism yields exchange-correlation corrections to Eilenberger's expression for the thermodynamic potential of a super-conductor, and the Ginzburg-Landau equation. Practical aspects of the application of the formalism are discussed.

PACS numbers: 71.10.+x, 74.20.-z, 74.50.+r

We present a density-functional formulation¹ for superconductors. The central results are formally exact selfconsistent equations generalizing the Bogoliubov-de Gennes equations² for inhomogeneous superconductors, as well as a formally exact generalization of Eilenberger's³ expression for the thermodynamic potential, which in turn leads to Ginzburg-Landau-type equations.

The formalism easily accommodates very general pairing interactions; to be definite, we write in standard notation and atomic units the grand-canonical Hamiltonian for a superconductor in an external potential v(r) as

$$\hat{H}_{v} = \int \psi^{\dagger}(r) \left[\frac{-\nabla^{2}}{2} - \mu + v(r) \right] \psi(r) dr + \frac{1}{2} \int \psi^{\dagger}(r) \psi^{\dagger}(r') \frac{1}{|r - r'|} \psi(r') \psi(r) dr dr' - \int \psi^{\dagger}_{\downarrow}(r'_{1}) \psi^{\dagger}_{\uparrow}(r_{1}) w(r'_{1}, r_{1}, r_{2}, r'_{2}) \psi_{\downarrow}(r'_{2}) dr_{1} dr'_{1} dr_{2} dr'_{2}, \quad (1)$$

where $\psi^{\dagger}(r)\psi(r)$ is a shorthand for $\sum_{a}\psi_{a}^{\dagger}(r)\psi_{a}(r)$. The kernel w is a (generally nonlocal) pairing interaction. Particular cases are the BCS form, ${}^{4}w(r_{1}',r_{1},r_{2},r_{2}') = w(r_{1}-r_{1}',r_{2}-r_{2}')$, and the Gorkov form, ⁵

$$w(r_1', r_1, r_2, r_2') = w_0 \delta(r_1 - r_1') \delta(r_1 - r_2) \delta(r_1 - r_2').$$

More realistically, we expect the kernel to be nonlocal but short ranged, i.e., $w(r'_1, r_1, r_2, r'_2) \rightarrow 0$ for $|r_1 - r'_1|$, $|r_1 - r_2|$, or $|r_1 - r'_2| \gg$ lattice parameter. To be brief, we have omitted vector-potential contributions to \hat{H}_v ; following a recent prescription for the normal state,⁶ however, we have also been able to introduce magnetic fields into the formalism (to be published).

In a superconductor, both the normal density operator, $\psi^{\dagger}(r)\psi(r)$, and the anomalous density operator, $\psi_{\uparrow}(r)\psi_{\downarrow}(r)$, have finite expectation values, which we denote by n(r) and $\Delta(r)$. This suggests that, in analogy with the external normal potential v(r), we also introduce an anomalous pair potential $^{7}D(r)$ into H_{v} :

$$\hat{H}_{v,D} \equiv \hat{H}_v - \int [D^*(r)\psi_{\uparrow}(r)\psi_{\downarrow}(r) + \text{H.c.}]dr.$$
(2)

As we shall see in an example below, it is useful to introduce instead of the local $\Delta(r)$ the *nonlocal* gap function⁸ $\Delta(r,r') \equiv \langle \psi_{\uparrow}(r)\psi_{\downarrow}(r') \rangle$, coupled to the nonlocal pair potential D(r,r'). This leads to

$$\hat{H}_{v,D} \equiv \hat{H}_v - \int [D^*(r,r')\psi_{\uparrow}(r)\psi_{\downarrow}(r') + \text{H.c.}]dr dr',$$
(2')

instead of Eq. (2). In the example below the integral in (2') acquires physical significance. However, even when $D(r,r')\equiv 0$, we shall see that it is convenient to keep a finite small D(r,r') until, at the end, the limit $D(r,r') \rightarrow 0$ is taken.

The first step in the density-functional formulation, a Hohenberg-Kohn theorem for $\hat{H}_{v,D}$, is easily established. This theorem states that, at the temperature $\theta = 1/\beta$, the densities n(r) and $\Delta(r,r')$ determine uniquely the density operator $\hat{\rho} = e^{-\beta \hat{H}_{v,D}}/\text{Tr} e^{-\beta \hat{H}_{v,D}}$, which minimizes⁹ the thermodynamic potential

$$\Omega_{v,D}[\hat{\rho}] = \operatorname{Tr}\{\hat{\rho}' H_{v,D} + \theta \hat{\rho}' \ln \hat{\rho}'\}.$$

The proof is a straightforward adaptation of Mermin's⁹ argument. From the theorem, it follows^{1,9} that the thermodynamic potential $\Omega_{v,D}$ can be written as a functional of n'(r) and $\Delta'(r,r')$:

$$\Omega_{v,D}[n',\Delta'] = F[n',\Delta'] + \int n'(r)v(r)dr - \int [D^*(r,r')\Delta'(r,r') + c.c.]dr dr',$$
(3)

where $F[n', \Delta']$ is a universal functional. Moreover, the inequality

$$\Omega_{v,D}[n',\Delta'] > \Omega_{v,D}[n,\Delta] \text{ for } [n'(r),\Delta'(r,r')] \neq [n(r),\Delta(r,r')]$$

© 1988 The American Physical Society

2430

provides a variational principle to determine the densities n(r) and $\Delta(r,r')$ associated with the Hamiltonian $\hat{H}_{v,D}$. Next, we define the exchange-correlation free-energy functional $F_{xc}[n'(r),\Delta'(r,r')]$ by the equality

$$F[n',\Delta'] = T_s[n',\Delta'] - \theta S_s[n',\Delta'] - \mu N + \frac{1}{2} \int \frac{n'(r)n'(r')}{|r-r'|} dr dr' - \int \Delta'^*(r_1,r_1')w(r_1',r_1,r_2,r_2')\Delta'(r_2,r_2')dr_1 dr_1' dr_2 dr_2' + F_{xc}[n',\Delta'], \quad (4)$$

where $T_s[n',\Delta']$ and $S_s[n',\Delta']$ denote the kinetic energy and the entropy of a noninteracting system subject to potentials $v_s(r)$ and $D_s(r,r')$ chosen such that its densities n'(r) and $\Delta'(r,r')$ are equal to those of the interacting system. The grand-canonical Hamiltonian for the noninteracting system,

$$\hat{H}_{s} = \int \psi^{\dagger}(r) \left[\frac{-\nabla^{2}}{2} - \mu + v_{s}(r) \right] \psi(r) dr - \int [D_{s}^{*}(r, r')\psi_{\uparrow}(r)\psi_{\downarrow}(r') + \text{H.c.}] dr dr',$$
(5)

is diagonalized² by the Bogoliubov transformation

$$\psi_{\uparrow}(r) = \sum_{m} [u_{m}(r)\phi_{1m} - v_{m}^{*}(r)\phi_{2m}^{\dagger}], \quad \psi_{\downarrow}(r) = \sum_{m} [u_{m}(r)\phi_{2m} + v_{m}^{*}(r)\phi_{1m}^{\dagger}].$$
(6)

Here, the functions $u_m(r)$ and $v_m(r)$ satisfy the eigenvalue equations

$$\left[\frac{-\nabla^2}{2} - \mu + v_s(r) - \epsilon_m\right] u_m(r) = -\int D_s(r, r') v_m(r') v_m(r') dr',$$

$$\left[\frac{-\nabla^2}{2} - \mu + v_s(r) + \epsilon_m\right] v_m(r) = \int D_s^*(r, r') u_m(r') dr',$$
(7)

and the fermionic operators ϕ_{1m} and ϕ_{2m} obey the usual anticommutation relations² and annihilate the ground state of the noninteracting system, so that

$$\langle \phi_{1m}^{\dagger}\phi_{1m}\rangle = \langle \phi_{2m}^{\dagger}\phi_{2m}\rangle = (1 + e^{\beta e_m}) \equiv f_m^{\theta}$$

As functions of the $u_m(r)$ and the $v_m(r)$, the densities are given by

$$n(r) = 2\sum_{m} \left[\left| u_{m}(r) \right|^{2} f_{m}^{\theta} + \left| v_{m}(r) \right|^{2} (1 - f_{m}^{\theta}) \right], \quad \Delta(r, r') = \sum_{m} \left[v_{m}^{*}(r') u_{m}(r) (1 - f_{m}^{\theta}) - v_{m}^{*}(r) u_{m}(r') f_{m}^{\theta} \right].$$
(8)

To determine the potentials $v_s(r)$ and $D_s(r,r')$, we compute the kinetic energy and the entropy of the noninteracting system in terms of the $u_m(r)$, $v_m(r)$, f_m^{θ} , and ϵ_m , substitute the result in (4), and then minimize the thermodynamic potential with respect to variations in n(r) and $\Delta(r,r')$. This yields

$$v_{s}[n,\Delta](r) = v(r) + \int \frac{n(r')}{|r-r'|} dr' + v_{xc}[n,\Delta](r),$$

$$D_{s}[n,\Delta](r,r') = D(r,r') + \int w(r',r,r_{1},r'_{1})\Delta(r_{1},r'_{1})dr_{1}dr'_{1} + D_{xc}[n,\Delta](r,r'),$$
(9)

where $v_{xc}[n,\Delta](r) = \delta F_{xc}[n,\Delta]/\delta n(r)$, and $D_{xc}[n,\Delta](r,r') = -\delta F_{xc}[n,\Delta]/\delta \Delta^*(r,r')$. With $D(r,r') \rightarrow 0$, Eqs. (9) complete the cycle of the self-consistent equations (7)-(9). This cycle solved, the thermodynamic potential (3) can be computed. We find

$$\Omega_{v,D}[n,\Delta] = \Omega_s^{\theta} - \frac{1}{2} \int \frac{n(r)n(r')}{|r-r'|} dr dr' - \int n(r)v_{xc}(r)dr + \int \Delta^*(r_1,r_1')w(r_1',r_1,r_2,r_2')\Delta(r_2,r_2')dr_1 dr_1' dr_2 dr_2' + \int [D_{xc}^*(r,r')\Delta(r,r') + \text{c.c.}]dr dr' + F_{xc}[n,\Delta].$$
(10)

Here $\Omega_s^{\theta} = -\theta \ln \operatorname{Tr} \{ e^{-\beta \hat{H}_s} \}$ is the thermodynamic potential for the noninteracting system.

Equations (7)-(10) constitute our main formal results. By neglecting the exchange-correlation and the Coulomb terms, we recover the Bogoliubov-de Gennes equations² from Eqs. (7)-(9) and Eilenberger's formula³ from Eq. (10).

We now discuss the physical significance of the pairing field D(r,r') for the case of a normal-superconducting junction. We consider two media, one superconducting and one normal, occupying the half-spaces x < 0 and x > 0, respectively, described by the Hamiltonian

$$\hat{H}'_{s} = \int \psi^{\dagger}(r) \left[\frac{-\nabla^{2}}{2} - \mu + v_{s}(r) \right] \psi(r) dr + \int [D_{s}^{*}(r, r')\psi_{\uparrow}(r)\psi_{\downarrow}(r') + \text{H.c.}] dr dr' + \int_{x' < 0} [t_{s}(r, r')\psi^{\dagger}(r)\psi(r') + \text{H.c.}] dr dr'.$$

This generalization of Eq. (5) includes a tunneling matrix element $t_s(r,r')$ between the two media. \hat{H}'_s is diagonalized by a Bogoliubov transformation involving functions $u_m(r)$ and $v_m(r)$ that, for x < 0, satisfy the Bogoliubov-de Gennes equations

$$\frac{-\nabla^{2}}{2} - \mu + v_{s}(r) - \epsilon_{m} \left[u_{m}(r) + \int_{x'>0} t_{s}(r,r')u_{m}(r')dr' = -\int D_{s}(r,r')v_{m}(r')dr', \right]$$

$$\frac{-\nabla^{2}}{2} - \mu + v_{s}(r) + \epsilon_{m} \left[v_{m}(r) + \int_{x'>0} t_{s}(r,r')v_{m}(r')dr' = \int D_{s}^{*}(r,r')u_{m}(r')dr', \right]$$
(11)

and for x > 0, the equations

$$\left[\frac{-\nabla^2}{2} - \mu + v_s(r) - \epsilon_m\right] u_m(r) + \int_{x' < 0} t_s(r, r') u_m(r') dr' = 0,$$

$$\left[\frac{-\nabla^2}{2} - \mu + v_s(r) + \epsilon_m\right] v_m(r) + \int_{x' < 0} t_s(r, r') v_m(r') dr' = 0.$$
(12)

Now let $\tilde{u}_l(r)$, $\tilde{v}_l(r)$, and $\tilde{\epsilon}_l$ be the eigenfunctions and eigenvalues of Eqs. (11) for $t_s(r,r') \equiv 0$. For x < 0, these functions constitute a complete basis in which we expand the $u_m(r')$ and $v_m(r')$ in the integrals on the left-hand sides of Eqs. (12). The Bogoliubov-de Gennes equations for the normal side (x > 0) then become¹⁰

$$\left[\frac{-\nabla^{2}}{2} - \mu + v_{s}(r) - \epsilon_{m}\right] u_{m}(r) = -\int D_{m}(r, r') v_{m}(r') dr',$$

$$\left[\frac{-\nabla^{2}}{2} - \mu + v_{s}(r) + \epsilon_{m}\right] v_{m}(r) = \int D_{m}^{*}(r, r') u_{m}(r') dr',$$
(13)

where $D_m(r,r')$ is a proximity-induced anomalous potential given by

$$D_{m}(r,r') = \int t_{s}(r,r_{1}) \sum_{l} \left[\frac{\tilde{v}_{l}^{*}(r_{1})\tilde{u}_{l}(r_{1}')}{\tilde{\epsilon}_{l} - \epsilon_{m}} + \frac{\tilde{u}_{l}(r_{1})\tilde{v}_{l}^{*}(r_{1}')}{\tilde{\epsilon}_{l} + \epsilon_{m}} \right] t_{s}(r_{1}',r') dr_{1} dr_{1}'.$$
(14)

At temperatures θ much smaller than the gap \tilde{D} on the superconducting side (x < 0), these potentials become independent of m [i.e., $D_m(r,r') \rightarrow D(r,r')$], since $\epsilon_m \approx \theta \ll \tilde{D} \leq \tilde{\epsilon}_l$. The field introduced in Eq. (2') thus describes proximity effects,¹¹ making the normal-superconducting junction a potentially interesting application of our formalism.

Like conventional density-functional theory, the formalism requires practical approximations to be useful. For weak pairing interactions one may set $F_{xc}[n,\Delta]$ $\rightarrow F_{xc}[n]$. Substitution in (10) introduces normal-state exchange and correlation in Eilenberger's formula³; a gradient expansion of $\Omega_{v,D}[n,\Delta]$, currently under study, leads to a generalization of the Ginzburg-Landau equation.

For strong electron-phonon interactions, we have obtained encouraging results for an effective time-independent electron-electron interaction, which—again with the substitution $F_{xc}[n,\Delta] \rightarrow F_{xc}[n]$ —would allow treatment of such systems by the present density-functional formalism.

For a given pairing interaction, the task of finding more general approximations for $F_{xc}[n,\Delta]$ remains a challenge (in principle, one might even explore the possibility of a unified theory featuring a universal exchangecorrelation functional applicable to all inhomogeneous superconductors).

The density-functional theory of this paper is alternative to the Green's-function theory of superconductors (especially the Eliashberg theory¹²), just as normal density-functional theory is an alternative to normal many-body Green's-function theory. Density-functional theory is specifically able to deal conveniently with spatially inhomogeneous systems.

For normal systems, a connection between the den-

sity-functional and the Green's-function approaches was pointed out by Sham and Schlüter.¹³ Following their procedure, the matrix of exchange-correlation potentials

$$\hat{U}_{xc}(r,r') = \begin{vmatrix} v_{xc}(r)\delta(r-r') & D_{xc}(r,r') \\ D_{xc}^{*}(r,r') & -v_{xc}(r)\delta(r-r') \end{vmatrix}$$

can be expressed in terms of the Green's-function matrix $\hat{G}(r,r';\omega)$ and its noninteracting Kohn-Sham counterpart $\hat{G}_s(r,r',\omega)$ as

$$\int \hat{G}_{s}(r,r_{1};\omega)\hat{U}_{xc}(r_{1},r_{1}')\hat{G}(r_{1}',r;\omega)d\omega dr_{1}dr_{1}' = \int \hat{G}_{s}(r,r_{1};\omega)\hat{\Sigma}_{xc}(r_{1},r_{1}';\omega)\hat{G}(r_{1}',r;w)d\omega dr_{1}dr_{1}',$$
(15)

where $\hat{\Sigma}_{xc}(r, r'; \omega)$ denotes the electron self-energy matrix excluding the Hartree term. Given an approximation for $\hat{\Sigma}_{xc}$, the integral equation (15) determines \hat{U}_{xc} .

Certain properties of the high- T_c superconductors suggest that the present formalism may be pertinent to them. Density-functional theory is well suited for the treatment of *inhomogeneities* due to crystalline defects, which strongly affect the properties of these materials.¹⁴ More importantly, the energy gaps' becoming comparable to the Fermi energy and the relatively small coherence length¹⁵ suggest that a unified treatment of normal and superconducting aspects (band structure, densities, gap function, etc.) may be necessary, e.g., to explain the 5% drop¹⁶ in the positron lifetime at the transition temperature of ceramic samples of YBa₂Cu₃O_{6.8}.

We thank W. Clinton for a discussion which stimulated our interest in this project. This work was supported by the National Science Foundation under Grant No. DMR87-03434. One of us (E.K.U.G.) gratefully acknowledges a Heisenberg Fellowship of the Deutsche Forschungsgemeinschaft.

^(a)On leave from the Instituto de Física e Química de São Carlos of the University of São Paulo, São Paulo, Brazil.

²P. G. de Gennes, *Superconductivity of Metals and Alloys* (Benjamin, New York, 1966).

⁴J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.

108, 1175 (1957).

⁵L. P. Gorkov, Zh. Eksp. Teor. Fiz. **34**, 735 (1958) [Sov. Phys. JETP **7**, 505 (1958)].

⁶G. Vignale and M. Rasolt, Phys. Rev. Lett. **59**, 2360 (1987).

⁷Anomalous densities and pair potentials appear in the Hartree-Fock-Bogoliubov equations, studied for nuclei [see, e.g., R. Bengtsson and P. Schuck, Phys. Lett. **89B**, 321 (1980)] and superconductors [see, e.g., W. L. Clinton, Int. J. Quantum Chem. Symp. 7, 479 (1973)].

⁸Normal density-functional theory has also been developed in a nonlocal version by T. L. Gilbert, Phys. Rev. B 12, 2111 (1975), but found little practical application. Logically, both normal and superconducting density-functional theory can be developed in either local or nonlocal versions.

⁹N. D. Mermin, Phys. Rev. 137, A1441 (1965).

¹⁰In Eqs. (13) and (14) we have neglected a nonlocal normal potential $v_m(r,r')$, much smaller than $D_m(r,r')$ for $\epsilon_m \ll \tilde{D}$.

¹¹G. Deutscher and P. G. de Gennes, in *Superconductivity*, edited by R. D. Parks (Dekker, New York, 1969), p. 1005. For recent work, see E. V. Thuneberg and V. Ambegaokar, Phys. Rev. Lett. **60**, 365 (1988), and references cited.

¹²G. M. Eliashberg, Zh. Eksp. Teor. Fiz. **38**, 966 (1960) [Sov. Phys. JETP **11**, 696 (1960)].

¹³L. J. Sham and M. Schlüter, Phys. Rev. B 32, 3883 (1985).
 ¹⁴G. Deutscher and K. A. Müller, Phys. Rev. Lett. 59, 1745 (1987).

¹⁵See, e.g., T. K. Worthington, W. J. Gallagher, and T. R. Dinger, Phys. Rev. Lett. **59**, 1160 (1987).

¹⁶Y. C. Jean, S. J. Wang, H. Nakanishi, W. N. Hardy, M. E. Hayden, R. Kiefl, R. L. Meng, H. P. Hor, J. Z. Huang, and C. W. Chu, Phys. Rev. B **36**, 3994 (1987); see also S. Ishibashi, A. Yamaguchi, Y. Suzuki, M. Doyama, H. Kumakura, and K. Togano, Jpn. J. Appl. Phys. **26**, L688 (1987).

¹For a review of density-functional theory, see W. Kohn and P. Vashishta, in *Theory of the Inhomogeneous Electron Gas*, edited by S. Lundqvist and N. H. March (Plenum, New York, 1983), p. 79.

³G. Eilenberger, Z. Phys. 182, 427 (1965).