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Density-Functional Theory for Superconductors
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A density-functional theory for superconductors at arbitrary temperature is described. It leads to
equations of the Kohn-Sham type, which incorporate exchange and correlation eff'ects into the
Bogoliubov-de Gennes equations for an inhomogeneous superconductor. Further, this formalism yields
exchange-correlation corrections to Eilenberger's expression for the thermodynamic potential of a super-
conductor, and the Ginzburg-Landau equation. Practical aspects of the application of the formalism are
discussed.

PACS numbers: 71.10.+x, 74.20.—z, 74.50.+r

We present a density-functional formulation' for superconductors. The central results are formally exact self-
consistent equations generalizing the Bogoliubov-de Gennes equations for inhomogeneous superconductors, as well as
a formally exact generalization of Eilenberger's expression for the thermodynamic potential, which in turn leads to
Ginzburg-Landau-type equations.

The formalism easily accommodates very general pairing interactions; to be definite, we write in standard notation
and atomic units the grand-canonical Hamiltonian for a superconductor in an external potential v (r) as

—p+v(r) y(r)dr+ 2 y (r)y (r'), tlt(r')tlt(r)drdr'
r —r'

tion A(r, r')—:(yt(r)tlt~(r')), coupled to the nonlocal
pair potential D(r, r'). This leads to

—„yi (rl )yt (r )wt(rl, r rl2, r2) yt(r2) yi(r2)dr dtr dlr2dr2,

where tlt (r) tlt(r) is a shorthand for g,y, (r) tlt, (r). The
kernel w is a (generally nonlocal) pairing interaction.
Particular cases are the BCS form, (wrl, r rtr2)2
=w(rt ri, r2 —r2)—, and the Gorkov form,

H, , o =H, ,
— [D*(r)tltt (r) tits (r)+ H.c.]dr. (2)

As we shall see in an example below, it is useful to in-
troduce instead of the local A(r) the nonlocal gap func-

w(r[, ri, r2, r2) =wpb(r t
—rI )8(r t

—r2)8(r t
—r2).

More realistically, we expect the kernel to be nonlocal
but short ranged, i.e., w(ri, r rlr2)20 for

vari

—ri i,
irt r2i, or rt r2 i

—» lattice—parameter. To be brief,
we have omitted vector-potential contributions to H,, ;
following a recent prescription for the normal state, 6

however, we have also been able to introduce magnetic
fields into the formalism (to be published).

In a superconductor, both the normal density opera-
tor, y (r)tit(r), and the anomalous density operator,
yt(r)tits(r), have finite expectation values, which we
denote by n(r) and h(r). This suggests that, in analogy
with the external normal potential v(r), we also intro-
duce an anomalous pair potential D(r) into H, , :

H, D=H, ,
— [D*(r,r')yt(r)tlt~(r')+H. c.]drdr',

(2')

instead of Eq. (2). In the example below the integral in
(2') acquires physical significance. However, even when
D(r, r')=0, we shall see that it is convenient to keep a
finite small D(r, r') until, at the end, the limit D(r, r')

0 is taken.
The first step in the density-functional formulation, a

Hohenberg-Kohn theorem for H„, D, is easily established.
This theorem states that, at the temperature 8=1/P, the
densities n(r) and A(r, r ') determine uniquely the densi-

ty operator p =e "i'Tre ",which minimizes the
thermodynamic potential

0,, o[p] =Tr jp'H, , o+Bp'Inp'j.

The proof is a straightforward adaptation of Mermin's
argument. From the theorem, it follows' that the ther-
modynamic potential 0,, o can be written as a functional
of n '(r) and A'(r, r'):

o[n ', A'] =F
[, n ', 5']+„n '(r) v (r)dr —„[D*(r,r ')A'(r, r ') +c.c.]dr dr ',

where F[n ', A'] is a universal functional. Moreover, the inequality

o[n', A'] &, n, o[n, h] for [n, '(r), a'(r, r')]a [n(r), a(r, r')]

(3)
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provides a variational principle to determine the densities n(r) and A(r, r ) associated with the Hamiltonian 0,, D.

Next, we define the exchange-correlation free-energy functional F„[n'(r),d, '(r, r')] by the equality

F[n ', d, '] = T, [n ', 6'] —OS, [n ', 6'] p—N+ —,', dr dr '

&'*(ri,rl)w(rI, r lrp, rp)h'(rp, rp)dry dry drpdrg+F„[n', A'], (4)

where T, [n', d, '] and S, [n', 6'] denote the kinetic energy and the entropy of a noninteracting system subject to potentials
v, (r) and D, (r, r') chosen such that its densities n'(r) and 6'(r, r') are equal to those of the interacting system. The
grand-canonical Hamiltonian for the noninteracting system,

A p2
0, =

Vr (r) —p+v, (r) y(r)dr — [D,*(r,r') yt (r) yi(r')+H. c.]dr dr',

is diagonalized ~
by the Bogoliubov transformation

yt(r) =g [u (r)gl —v*(r)Pj ], yi(r) =g [u (r)pp +v*(r)pi ].

Here, the functions u (r) and v (r) satisfy the eigenvalue equations

p2

2
—p+v, (r) —e u (r) = — D, (r, r')v (r')v (r')dr',

fO—p+v, (r)+e v (r) = D, (r, r')u (r')dr',

(7)

and the fermionic operators pi and pp obey the usual anticommutation relations and annihilate the ground state of
the noninteracting system, so that

(yY' yl )=(yf y~ )=(I+e~")=f'. —

As functions of the u (r) and the v (r), the densities are given by

n(r) =2+ luau (r) i f + i v (r) i (1 f )], A(r,—r') =g[v (r')u (r)(1 f ) —v—(r)u (r')f ].

To determine the potentials v, (r) and D, (r, r'), we compute the kinetic energy and the entropy of the noninteracting
system in terms of the u (r), v (r),f, and e, substitute the result in (4), and then minimize the thermodynamic po-
tential with respect to variations in n(r) and h(r, r'). This yields

v, [n, h] (r) = v (r) +„,dr '+ v„, [n, h] (r),n(r ')

r r'—
D, [n, h](r, r') =D(r, r')+„w(r', r, ri, ri)A(ri, ri)dry drii+D„[n, bl(r, r'),

where v„,[n, h](r) =bF„,[n, h]/bn(r), and D„,[n, h](r, r') = —bF«[n, d, ]//bh (r, r') With D(r, r. ') 0, Eqs. (9) com-
plete the cycle of the self-consistent equations (7)-(9). This cycle solved, the thermodynamic potential (3) can be com-
puted. We find

fO

O„D[n,h] =0, —
—,', drdr' — n(r)v„, (r)dr+ A*(ri, rl)w(rI, ri, rq, rq)A(rq, rq)dr|dry dridrq

r —r' aJ

+ [D„*,(r, r')b(r, r')+c.c.]dr dr'+F«[n, A]. (10)

Here 0, = —OlnTr[e '] is the thermodynamic potential for the noninteracting system.
Equations (7)-(10) constitute our main formal results. By neglecting the exchange-correlation and the Coulomb

terms, we recover the Bogoliubov-de Gennes equations from Eqs. (7)-(9) and Eilenberger's formula3 from Eq. (10).
We now discuss the physical significance of the pairing field D(r, r') for the case of a normal-superconducting junc-

tion. We consider two media, one superconducting and one normal, occupying the half-spaces x (0 and x )0, respec-
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tively, described by the Hamiltonian

fO

0,' = y'(r)
p2

2
—p+v, (r) y(r)dr+ [D,*(r,r')yt(r)y~(r')+H. c.]dr dr'

+, [t, (r, r')yt(r)y(r')+H. c.]dr dr'.

This generalization of Eq. (5) includes a tunneling matrix element t, (r, r ') between the two media. H,
'

is diagonalized

by a Bogoliubov transformation involving functions u (r) and v (r) that, for x & 0, satisfy the Bogoliubov-de Gennes
equations

P

p2

2
—p+v, (r) —c u (r)+, t, (r, r')u (r')dr'= — D, (r, r')v (r')dr',

p2

2
—p+ v, (r) + e v (r)+, t, (r, r')v (r')dr ' = D,*(r,r ') u (r ')dr ',

and for x & 0, the equations

p2

2
—p+v, (r) —e u (r)+, t, (r r')u (r')dr'=0,

(12)
p2

2

p2 —p+v, (r) —e u~(r) = —
l D (r, r')v (r')dr',

p+v, (r)+—e v (r)+, ,t, (r, r')v (r')dr'=0.

Now let ut(r), vt(r), and Ft be the eigenfunctions and eigenvalues of Eqs. (11) for t, (r, r') =0. For x & 0, these func-
tions constitute a complete basis in which we expand the u (r') and v (r') in the integrals on the left-hand sides of
Eqs. (12). The Bogoliubov-de Gennes equations for the normal side (x & 0) then become'o

y2 fo—p+v, (r)+e v (r) = D (r, r')u (r')dr',

where D (r, r') is a proximity-induced anomalous potential

vt'(r))ut(r! ) ut(r))vt*(rI)
D~r, r' = t, rr~ Z,

&I &m &I+ &m

At temperatures 0 much smaller than the gap D on
the superconducting side (x &0), these potentials be-
come independent of m [i.e., D (r, r') D(r, r')], since
e =8«D~ ~~. The field introduced in Eq. (2') thus
describes proximity effects, " making the normal-super-
conducting junction a potentially interesting application
of our formalism.

Like conventional density-functional theory, the for-
malism requires practical approximations to be useful.
For weak pairing interactions one may set F„,[n, h]

F„,[n] Substitution in .(10) introduces normal-state
exchange and correlation in Eilenberger's formula; a
gradient expansion of n„D[n, A], currently under study,
leads to a generalization of the Ginzburg-Landau equa-
tion.

For strong electron-phonon interactions, we have ob-
tained encouraging results for an effective time-inde-
pendent electron-electron interaction, which —again with

given by

t, (r ~,r ') dr ~ dr ~. (14)

!
the substitution F„,[n, h] F„,[n] would all—ow treat-
ment of such systems by the present density-functional
formalism.

For a given pairing interaction, the task of finding
more general approximations for F„,[n, h] remains a
challenge (in principle, one might even explore the possi-
bility of a unified theory featuring a universal exchange-
correlation functional applicable to all inhomogeneous

superconductor s).
The density-functional theory of this paper is alterna-

tive to the Green's-function theory of superconductors
(especially the Eliashberg theory ' ), just as normal
density-functional theory is an alternative to normal
many-body Green's-function theory. Density-functional
theory is specifically able to deal conveniently with spa-
tially inhomogeneous systems.

For normal systems, a connection between the den-
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sity-functional and the Green's-function approaches was pointed out by Sham and Schliiter. '3 Following their pro-
cedure, the matrix of exchange-correlation potentials

v„,(r)8(r —r') D„,(r, r')
D„,(r, r ') —v„,(r) t5(r —r ')

Jl

can be expressed in terms of the Green's-function matrix G(r, r';to) and its noninteracting Kohn-Sham counterpart
G, (r,r', ro) as

A

G, (r, r~', ro)U„(rt, r1)G(r1, r;ro)dhodr1dr1= G, (r,
A

where Z„,(r, r';to) denotes the electron self-energy ma-
trix excluding the Hartree term. Given an approxima-
tion for Z„„the integral equation (15) determines U„.

Certain properties of the high-T, superconductors sug-
gest that the present formalism may be pertinent to
them. Density-functional theory is well suited for the
treatment of inhomogeneities due to crystalline defects,
which strongly affect the properties of these materials. '4

More importantly, the energy gaps' becoming compara-
ble to the Fermi energy and the relatively small coher-
ence length' suggest that a unified treatment of normal
and superconducting aspects (band structure, densities,

gap function, etc.) may be necessary, e.g. , to explain the
5% drop 6 in the positron lifetime at the transition tem-
perature of ceramic samples of YBa2Cu30s s.
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