Comment on "Naked Singularities in Self-Similar Spherical Gravitational Collapse"

In a recent Letter,¹ Ori and Piran have shown that the self-similar spherical gravitational collapse of an adiabatic perfect fluid with a soft enough equation of state can give rise to a naked shell-focusing singularity.² This important work extends beyond dust³ known fluid-collapse histories which have nakedly singular end states. For dust it is known⁴ that the naked shell-focusing singularities are *not* strong-curvature singularities. The purpose of this Comment is to point out that the singularities produced by Ori and Piran *are* strong-curvature singularities.

Following the work of Clarke and Królak,⁵ consider a null geodesic (N), affinely parametrized by λ , with fourtangent l^a , and terminating at the shell-focusing singularity where $\lambda = 0$. If

$$\lim_{\lambda \to 0} \lambda^2 R_{\alpha\beta} l^a l_{\beta} \neq 0, \tag{1}$$

where $R_{\alpha\beta}$ is the Ricci tensor, then N terminates in a strong-curvature singularity in the sense of Tipler.⁶

For the example given by Ori and Piran¹ (and in their notation) it follows from Einstein's equations, the comoving condition, the equation of state $p = (\Gamma - 1)\rho$, and the self-similar relations $\rho = D(y)/T^2$ and $e^{\psi} = (4\pi \times D)^{2(1-\Gamma)/\Gamma}$ that

$$\lambda^{2} R_{a\beta} l^{a} l^{\beta} = 2\Gamma(4\pi D)^{(2-\Gamma)/\Gamma} \left(\frac{\lambda}{T} \frac{dT}{d\lambda}\right)^{2}.$$
 (2)

Now the appropriate N here is the Cauchy horizon $y = y_1 = \text{const.}$ The null geodesic equations for the Cauchy horizon integrate explicitly to give

$$T = R/y_1 \propto \lambda^{\delta}, \quad \delta = \text{const} > 0, \tag{3}$$

and so

$$\lambda^2 R_{a\beta} l^a l^\beta = 2\Gamma \delta^2 [4\pi D(\gamma_1)]^{(2-\Gamma)/\Gamma}.$$
(4)

That is, the Cauchy horizon terminates in a *strong*-curvature singularity.

Kayll Lake

Department of Physics Queen's University Kingston, Ontario, Canada, K7L 3N6

Received 26 August 1987 PACS numbers: 04.20.Cv

¹A. Ori and T. Piran, Phys. Rev. Lett. **59**, 2137 (1987).

²D. M. Eardley and L. Smarr, Phys. Rev. D **19**, 2239 (1979).

³Reference 2; D. Christodoulou, Commun. Math. Phys. 93, 171 (1984); R. P. A. C. Newman, Classical Quantum Gravity 3, 527 (1986).

⁴See Newman (Ref. 3).

⁵C. J. S. Clarke and K. Królak, J. Geom. Phys. 2, 127 (1986).

⁶See, for example, F. J. Tipler, C. J. S. Clarke, and G. F. R. Ellis, in *General Relativity and Gravitation*, edited by A. Held (Plenum, New York, 1980).