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Universality of Physical Properties of Disordered Alloys
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A simple idea of statistical independence of thermal and chemical disorders in perfectly disordered
solid solutions suggests the universality of their thermodynamic and transport properties at high temper-
atures. Our experimental data on diagrams of state, heat capacities, and resistivities of mixtures of
heavy alkali metals convincingly support this idea. A generalization of Lindemann s criterion of melting
for disordered alloys has been suggested and applied to a variety of mixtures.
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Diagrams of state of binary mixtures of heavy alkali
metals K, Rb, and Cs exhibit deep minima with

congruent melting at their deepest (azeotropic) points'
(Fig. 1). These points for Rbo 5Csp 5, Ko sCso 5, and

Rb0667K0333 oA'er the rare opportunity to crystallize
these alloys from their liquid state without any trace of

separation. We have used them to produce samples of
perfectly disordered mixed crystals.

The heat capacity of c~ of K05Csps and electrical
resistivities of Kp 5Csp s, Rbp sCso s, and Rbo 667Kp 333

have been measured together with their melting temper-
atures T . The experimental technique and sample
preparation already have been reported elsewhere. 2'
The structures, molar volumes, and elasticities of the al-
loys are similar to or close to additive in the correspond-
ing properties of the pure metals. s However, their
melting temperatures, heat capacities, and electrical re-
sistivities are drastically different (see Figs. 1, 3, and 4).

The amazing result of this study is that these
differences can be explained by one simple idea of sta-
tistical independence of thermally induced vibrational
disorder of an "averaged" lattice from temperature
independent disorder due to size difference of the con
stituent atoms. Our explanation is valid at high temper-
ature (T)e, where e is the Debye temperature). We
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FIG. 1. Diagrams of state of alkali-metal mixtures. The
two kinds of points are experimental data (Ref. 1) on freezing
and melting temperatures of alloys at corresponding concentra-
tions. The lines are our calculation in accordance with Eq. (4).

Au Fractional Atomic Concentration Ag

FIG. 2. Diagram of state of Au-Ag alloy. The solid line rep-
resents our calculation; the two kinds of points are experimen-
tal data on the freezing and melting.
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have used this idea not only for interpretation of our own

data but also to describe some experimental results al-

ready known from the literature. 6 It gives a satisfactory
quantitative description of phase diagrams for different
disordered alloys (see, for example, Fig. 2). The physi-
cal properties of these alloys also exhibit a trend to
universality, although just on the qualitative level, mostly
as a result of imperfection of the samples.

Let us consider the binary solid solution with atoms of
two different sizes randomly distributed over a common
lattice of the same syminetry as that of the pure com-
ponents. It is known that an x-ray pattern of such a
crystal can be interpreted as a result of superposition of
two different patterns corresponding to two different

types of disorder.
A mixed lattice which includes atoms of different na-

ture at high temperature produces the same diffraction
pattern as would be produced by a simple lattice homo-

geneously occupied by "averaged" atoms. Thermal
motion will cause a reduction of the Bragg-peak intensity
which is proportional to the Debye-Wailer factor
D =e, where W is dependent upon a relative mean
square uncertainty of equilibrium positions of those
"averaged" atomss:

&(ar),2) 9g 2T
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Here M12=piM1+p2M2 ("average" mass of atom of
the mixture with concentrations pi,p2), 812 =p181
+p 282 ("average" Debye temperature ), and

d12 =p111+p2d2 (average nearest-neighbor distance ).
Meanwhile, a size disorder emerging from a mismatch of
atoms will manifest itself like a "frozen heat motion"
and introduces an additional reduction D'=e
dependent upon a relative mean square uncertainty of
the atomic size: x12 =4&(dr12) )ld (2. The intensity
which is lost by the diffraction peaks because of size
dispersion of the scatterers appears in a diffuse back-
ground caused just in the same way as happens because
of uncertainty of the scatterers' position from thermal
motion. Indeed, such a strong, temperature-independent,
diffuse background has been observed on the x-ray pat-
tern of our Kp5Csp5 mixed crystal. ' The simplest as-
sumption is that these two scattering factors are uncorre-
lated. Therefore, for a perfectly disordered mixed crys-
tal the total reduction of the integrated intensities of the
Bragg peaks can be presented as a generalized Debye-
Waller factor D~ =DD'. This assumption was used first
for interpretation of x-ray patterns of disordered solid
solutions by Guinier.

Let us introduce now a corresponding definition of a
generalized mean square uncertainty of the atomic coor-
dinate in the mixed crystal, which Guinier has never
used:

Generally speaking, a symmetry-dependent numerical
coefficient can multiply the second term. This definition
means that one can postulate a new generalized Linde-
mann criterion of melting for disordered alloys analogous
to that of the pure substances as a natural limitation of
the relative atomic-coordinate uncertainty within the
crystalline state. It is clear that such a criterion will set

up a limit not only for the vibration amplitude but for
the size dispersion in a real mixed crystal as well. "

Combining (1) and (2), one has to assume, as has
been done for the pure crystals, that the total relative
mean square uncertainty should be always below a cer-
tain value x:
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which gives the following equation for the melting tem-
perature:
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M 12k B012d 12

9 t'i
x 1—4& (ar12) ')

xmd122 2
(4)

75—

K

~ Rb

x CS

' Ks.s CW~

~ Ki~ Q~+ XB

—o
PIE

(Lp 70

65

0
0 +

0
0 v

+

~ +M

~~

X +

0 OII 0 013
I

0.015

Xg

I

0.017 ~ I 0 019

FIG. 3. Heat capacities c=c~ —c,l of K, Rb, Cs, and
Kp 5Csp g vs mean square uncertainty x, .

The next crucial step in our approach is the calcula-
tion of a second terin in Eqs. (2) and (4) based on a con-
cept of a teinperature-dependent hard-sphere diameter of
an atom. '

The recent development of density-functional theory
confirms both the validity of the Lindeinann criterion for
freezing of a hard-sphere liquid'3 and the applicability of
the hard-sphere inodel to freezing of binary mixtures. '

Therefore we define the average uncertainty of atomic
radius as &(Ar12) ) =p1p2(ri —r2), where ri and r2 are
temperature-dependent hard-sphere radii taken from
Ref. 12.

One can see from Fig. 1 that the melting temperatures
calculated from Eq. (4) agree with the experimental
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values ' which we have also checked in our own measure-

ments. This calculation fits the experimental data much

better than the corresponding calculation based on pseu-

dopotential theory. In Fig. 2 one also can see that Eq.
(4) works well for Ag-Au solid solution. Here the size

dispersion is small and the melting almost exactly corre-
sponds to a prefactor in the Eq. (4).

In Fig. 3 the data on the lattice heat capacities
c =c~ —c,l (c,l, the electron heat capacity, was subtract-
ed from the measured cz following MacDonald, Shukla,
and Kahaner' ) of pure K, Rb, and Cs are plotted to-

gether with K05Csp3 as functions of the parameter x,2

characterizing only the thermally induced disorder. At

high temperature [see Eq. (I)] this parameter is almost

proportional to T. s One can see that c of a pure metal is

close to a linear universal function of x, till it reaches
about 0.8T . Then the function ceases to be linear (be-
cause of vacancy formation and/or strong deviation from

harmonicity) but does not cease to be universal. ' The
data on K03Csp 5 appear to be strongly separated from

this line. However, if instead of x, one uses the general-

ized parameter x defined by Eq. (2), our experimental

points for Ko 3Csp 5 fall on a continuation of the universal

curve for pure metals with an accuracy better than 1%.
The melting point of the alloy also excellently corre-

sponds to the same value of the Lindemann constant
x'=x' (see Fig. 1).

The interpretation of our resistivity data (Fig. 4) is

even more striking. The mean free path of an electron is

defined in the deformation-potential approximations by a

local relative fluctuation of volume 6 (h=AV/V):=¹(6) (N is a number density and o a total cross
section). We can again use Eq. (2) rewritten to corre-
spond to relative fluctuation of volume under the same
assumption of statistical independence of thermal fluc-

tuations of scatterers from their size dispersion. It leads
to the well-known Matthiessen's rule':

hkF 1 1
p —+ (5)

Here kF is the Fermi wave number and n is the electron
concentration. The electron's mean free path due to
thermal lattice vibrations X, has already been calculat-
ed: X, '=nc7 —,

' x, T/T, where x is the value of xi at
the melting point of the alloy.

Simple calculation of a term defined by the size
difference in Eq. (5) gives for the bcc structure

~l2 n& p lp2(VI V2) '/(pi Vi+p2V2)

Atomic volumes Vl and V2 should be calculated in this

case from radii corresponding to electron scattering. 's

One can notice that Eq. (6) gives a generalization of the
well-known Nordheim rule (and Mott's rule as its conse-

quence), namely, that the residual resistivity of an alloy
constituted from elements with close atomic volumes is

proportional to plp2. '

To single out the size-dependent effect, we have plot-
ted reduced resistivities p/p (p is the resistivity of a
crystal at T ) versus reduced temperature T/T:

pm

3 xl'm T/Tm+ 3'2 plp2(r 1' r2) '/(plr I'—+p2r)) '
—', x,' + —,', plp2(r|3 —r))'/(plr|3+p2r))'

(7)
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FIG. 4. Reduced resistivities of alkali-metal alloys below

their melting points.

In Fig. 4 one can see the agreement of our experimen-
tal data with the universal Eq. (7). The deviation of the
measured points from Eq. (7) at higher temperature for
all alloys, but especially for Rb0667K0333 is easily ex-

plained by a premelting phenomenon. This phenomenon
affects the two other alloys in a much milder way be-
cause of their lower melting points. From Fig. 3 one can
see that the premelting phenomenon for the low-melting

alloy KosCso5 is much smaller than for pure elements
(and for the high-melting alloy K-Rb correspondingly).

Thus, we have demonstrated that the idea of statistical
independence of thermal fluctuations and size dispersion,
when applied to alkali-metal disordered alloys, leads to
impressive quantitative universality in macroscopic prop-
erties. The key point of our experimental study is the
possibility of preparing fully disordered mixed crystals at
the azeotropic points of diagrams without a trace of par-
tial ordering or inclusions of other phases. In principle,
such a high degree of disorder is achievable for any con-
centration of a disordered alloy. However, practically, it
requires extremely long annealing times, maybe as long
as several months. Nevertheless, when the same idea is

used to describe various binary (Au-Ag, Ar-Kr, and oth-
er) as well as ternary (K-Rb-Cs) alloys, the diagrams of
state show remarkable agreement with experimental
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FIG. 5. Heat capacities c =c~ —c i of Cu, Au, and
Aup. 9Nip. l, Aup. 25Cup. 75 vs mean square uncertainty xi. The
experimental data on Cu, Au, and Aup. 9Nipi are taken from
Ref. 6. The dashed curve is assumed in accordance with our
evaluation of the poor data of both Refs. 6 and 22.
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