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Relaxation in Self-Similar Hierarchical Spaces
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A new model of a hierarchical space with arbitrary transfer rates is introduced. The topology is deter-
mined by a self-similar coupling scheme. It is closely related to the topology of a corresponding ul-

trametric space. The model allows exact solutions to the random-walk problem, the intermediate
scattering function, and the autocorrelation function. The solutions are identical in structure to the ex-
act solution of the problem of energy transfer in disordered media which corresponds to parallel rather
than to sequential coupling schemes.

PACS numbers: 61.41.+e, 75.40.—s, 87.10.+e

Complex systems with many nearly degenerate low-

energy states which are separated by high energy bar-
riers often exhibit nonexpontial decay patterns. Among
these systems are glasses, ' spin-glasses, proteins,
neural networks, and also problems of optimization like
the one of the traveling salesman. 6 Diffusion in such sys-
tems is slowed down or accelerated. The latter can occur
in turbulent fiow. Nonexponential decay patterns can
also be observed by the measurement of the intermediate
scattering function with neutron scattering or Mossbauer
spectroscopy. Mossbauer spectra of iron containing pro-
teins may contain broad quasielastic liness which are in-

dicative of nonexponential decay.
To account for nonexponential time decay, models of

hierarchically constrained dynamics have been intro-
duced. Ultrametric spaces support such hierarchical
structures and provide the topology for the mean-field
spin-glass. ' Though the spin-glass topology does not
directly relate to its dynamics, ultrametric spaces are
considered to yield suitable model structures for the dy-
namics of many complex systems. The dynamics in a ul-

trametric space follows a sequential coupling scheme
where relaxation or transport processes involve many in-

termediate states. But also relaxation processes with a
parallel coupling scheme give rise to nonexponential de-
cay patterns. An example is the problem of energy
transfer from a donor to acceptors in disordered media. '

!n this Letter dynamics of complex systems are stud-
ied with use of a general model with a hierarchical cou-
pling scheme which exhibits a nearly ultrametric topolo-

gy. Exact general solutions for the random-walk prob-
lem, the intermediate scattering function, and the auto-
correlation function are provided. The structure of the
solution agrees with that of the energy-transfer problems
in disordered media.

Discrete states in spaces with an ultrametric topology
form clusters on various hierarchies. An example of di-
mer clusters on three hierarchies is depicted in Fig. 1.
At a low hierarchy (energy) level there are many distinct
clusters. At a higher hierarchy level these clusters are
connected by pathways involving a high energy barrier
and can merge into a single cluster. In Fig. 1 two dis-

tinct coupling schemes of dimer clusters are shown. In
part (a) the coupling scheme is such that at a given
hierarchy transitions occur with equal probability be-
tween all states of the corresponding cluster. This cou-
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FIG. 1. Two coupling schemes involving dimer clusters.
Each dot represents a state. Pairs of states are connected by
pathways involving energy barriers which determine the dis-
tance. (a) An ultrametric topology where all states within a
given hierarchy level can be reached with equal probability.
(b) The coupling scheme is approximately ultrametric. At
each hierarchy level only pairs of states are connected. The set
of pathways on hierarchy level four is not completed.
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pling mechanism wipes out the cluster structures prevail-

ing at lower hierarchy levels. This space with an ul-

trametric topology is normally used. " In the other cou-

pling scheme [depicted in Fig. 1(b)1 states are connected
pairwise only. Its topology is approximately ultrametric.
Dynamics on the two different spaces are equivalent if
distances (energies) of subsequent hierarchy levels are
well separated from each other.

All relaxation processes in a space with a discrete
number of states are governed by a master equation:

dp(r)/dr =p(r)RL, p(0) =pp.

A finite ultrametric space of binary clusters involving L
hierarchy levels contains 2 states. The component p, (t)
of the state vector p(t) yields the probability to meet the
system in the local state at site n. Hence, Pp„(t) =1.
The rate matrix RL corresponding to the coupling
scheme of Fig. 1(b) can be defined by the following re-
cursion relation:

where qL is defined by the following recursion relation:

q, +) =[q, , (l —2l, )q, ],

q]=1, j=1,2, . . . , L —1.

The stationary state with eigenvalue R[0] =0 is for in-

stance given by

1[0]&=2 (1,1,1).

We are now ready to write down exact solutions. The
autocorrelation function describing the time decay of a
state localized at site n is

e(r) =(n
~
exp(r RL)

~
n)

—,
' exp( 2R—I, t) (9)

I j 1

All combinations of the factors —,
' exp( —

2R~t) appear in

the products of the above expression. Thus the time de-

cay can also be written as

R~ RJ+ [IJ
R. j 0 1, . . . , L-1, (2)

L

e(t) =
U [ —,

' + & exp( 2R, t)].—j=l
(lo)

where R~ and I~ are (2~X2J)-dimensional matrices and

I~ is a unit matrix (Io= 1). The recursion (2) starts with

Ro R
R( = ~ ~, Ro=o.

1 0
(3)

J JDy[= —,
' J2 D D

', j=o 1, . . . , Do=1. (5)
J J

The eigenstates of the rate matrix are labeled by
I =Pj ~ l~ x 2~ ' whose binary representation can be ab-
breviated by [I]=(l~, . . . , lL). The eigenvalues of the
rate matrix RL are

The parameters R, determine the transfer rate on the in-
dividual hierarchy levels. The rate matrix given by

L

RL =RL —Il. g RJ (4)
j~1

accounts for detailed balance, i.e.,

2L —
1

QR„=O.
n 0

The rate matrix can be diagonalized by a similarity

transform RLd =DLRLDL ' where

The other important case corresponds to energy transfer
by multipolar interactions:

Rj+1 =Rmax j~ - 1/p (12)

p =kBT/Ae, j=1,2, . . . ,L,

where the long-time decay becomes a stretched exponen-
tial Kohlrausch 1a~,

This expression is identical to the time decay function for
energy transfer from a donor to randomly distributed ac-
ceptors where the probability that an acceptor resides at
a lattice site is given by p =0.5. ' The value pe0. 5 cor-
responds to asymmetric dimer clusters. The more gen-
eral case of n different acceptor molecules corresponds to
ultrametric spaces built with (n+1)-mer clusters. The
detailed analytical expressions worked out for the
energy-transfer problem' facilitate the evaluation of the
time correlation function. A rectangular distribution of
energy barriers with rates

R~+ [ =R,„exp( jhow/kaT), —

j=o, l, . . . , L —1,

corresponds to energy transfer by exchange interaction
yielding an algebraic long-time decay

e(t)-t ', a=(kiiT/de)ln(2).

L

R[I]= —2X lJRJ,j~1

the corresponding eigenstates are

~
[I])=2 q (7)

+(t) -exp( ct~), p ( 1. —

In an infinite space (L ~), N(t) =0 for t &0 and

p & 1. For finite L and p & 1, @(t)-exp( ct)—
Next we consider diffusion. The average distance the

system has moved at time r starting from the local site j
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1s

2L —
1

x) (t) =ax g (n j—)p&„(t),
n=0

form which is reminiscent of Eqs. (10) and (15),
L

I(k, t) =+[I—sin'(2' 'wxk)

x, (t) =Wx[dA)(t)/da]. =p (i4)

After some algebra one obtains with the binary represen-
tation j=P;=~ j;2' ' for the generating function

L

A)(t) =e ) 2 P [(1+e' ' ')
i 1

+(1-2j,)e "'(i-e" ')] (IS)

and with Eq. (14)
L

x, (t)/Ax = —j+ g 2' [1 —(1 —2j;)e ' ].

With use of the generating function A)(t), arbitrary
moments of the distance distribution can be calculated.
With a rectangular distribution of energy barriers (11)
the average distance for diffusion at long times behaves
as

xp(t ) —t ' for a = (kaT/he)ln(2) & 1

and as

xp(t) t for a & l.

At « I, xp(t) —I/@(t) as is typical for compact ex-
ploration. ' For a & 1 the character of the diffusion pro-
cess changes to an open exploration of the ultrametric
space. The long-time behavior of xp(t) corresponding to
the Kohlrausch law (12) is for a large but finite number
of hierarchy levels xp(t)-t Thus the e.xploration is

open for all values of P.
Finally the intermediate scattering function is evalu-

ated which can be defined as

I(k, t) =(f
I exp(RLt) I f)

with states

If) —2 L/2(1 ff f2 I)

and a phase factor f=exp(iAxk). It can be cast into a

where

p,„(t)=(j
I exp(RLt) I

n)

is the conditional probability that the system is at t =0
at site j and at time t at site n A. generating function is

introduced:

A) «) =(j I exp(RLt ) I a)),

where

Ia, )=e )'(l, e',e', e"' ")
such that

+ sin (2' hxk )e ' l. (17)
It is analogous to the problem of energy transfer from

a donor to acceptors where the acceptor distribution
is not completely at random but exhibits a periodic
structure. It is determined by the probability p;
=sin (2' d,xk) to meet acceptors at a given hierarchy
level i. The effect of this hierarchy dependence is to
reduce the effective number of hierarchies which are in-

volved. In the special case where 2'hxk =n at a certain
i, all hierarchy levels greater than i do not contribute to
the intermediate scattering function (17). Thus unless
this effect reduces the number of hierarchies dramatical-

ly the long-time behavior of the intermediate scattering
function (17) and of the autocorrelation function are
equal.

In summary, a new type of hierarchical space has been
considered. Its self-similar coupling scheme imposes an
approximate ultrametric topology. A major difference
from other ultrametric spaces is the pairwise connection
of states on each hierarchy level such that the state dis-
tribution enforced by dynamics on a given set of hierar-
chy levels is not wiped out by dynamics on the next
higher hierarchy level.

Exact solutions are available. For energy barriers in-

creasing linearly or logarithmically with the hierarchy
level, the time decay pattern is algebraic or stretched ex-
ponential, respectively. Diffusion processes on such a
space correspond for a stretched exponential decay law

always to an open exploration. For an algebraic decay
the diffusion process is an open exploration at high tem-
peratures [a=(kaT/he)ln(2) & 1] and a compact ex-
ploration with a slowed down diffusion at lower tempera-
tures [a & 1].The present inodel of an ultrametric space
does not exhibit anomalous accelerated diffusion which is

observed in the model of Wegner and Grossmann. 7 This
major difference is due to the influence of intermediate
states at higher hierarchies which are responsible for the
richer dynamical behavior of their model. In the present
model such intermediate states are absent.

It is a surprising fact that relaxation processes in

hierarchical spaces which posses a sequential coupling
scheme and the energy-transfer process from a donor to
randomly distributed acceptors which is based on a
parallel coupling scheme lead to the same expressions for
time decay. With the simple analytical expressions at
hand decay patterns at intermediate times and the range
of validity of the long-time decay laws can be studied in

more detail. Furthermore, it becomes possible to con-
struct hierarchical spaces whose topologies give rise to
difTerent decay laws in different time regimes, a situation
which is often met in complex systems.
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