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Lattice Dynamics of Silicon with Empirical Many-Body Potentials
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Several recently proposed models for the interatomic potential in silicon are used to generate the in-

teratomic force constants. These are then used to calculate the elastic constants and selected normal-

mode frequencies. A comparison of the calculated and experimental values provides a test of the models.

None of the models tested is completely satisfactory.

PACS numbers: 63.20.Dj, 61.50.Lt

There have recently been proposed several phenome-
nological potential models for silicon, ' mainly intended
for use in simulations of the properties of the condensed
phases. The parameters of the models can be adjusted
to fit observed structural properties or theoretical values
of overlap and bonding energies. Lattice dynamics pro-
vides an alternative test of the models, which tests only
the properties corresponding to small excursions from
equilibrium, but which is an extremely demanding test in

that regime. I demonstrate here that none of the models
referred to above provide a fully satisfactory description
of the lattice vibrations of silicon.

Stillinger and Weber' have proposed a potential con-
sisting of a sum of two-body and three-body terms. The
two-body potential is written

u2(rij) =ef2(rij/a),
r

A (Br —r v) exp[(r —a) '], r & a,0.
where e is chosen to give f2 depth —

1 and o is chosen to
make f2 a minimum at r=2'j. With the choice of a
given in Ref. 1, the potential is cut off between the first-

t

and second-neighbor distances. The same cutoA' is used
for the three-body terms which are written

u 3(r;,rj, rk ) =g f3(r;/tT, rj/crkt/o ), f3(r;, rj, rk ) =h (r j, rik, &~tk ) + h (rj;,rjk, lj/jk ) + h (rki rkj lltkj ),

where Oj;k is the angle between rj and rk subtended at vertex i Provided . both r;j and r;k are both less than the cutoA' a,
we have

h(r~j, rtk, 8jtk ) =xexp[y(r~j —a) '+ y(r k
—a) '] (cos8jtk+ —,

' ) '.

Two significant properties of the three-body potential when it is applied to crystalline silicon are that only triplets con-

sisting of an atom and two of its nearest neighbors are counted (and for any such triplet only one h term in f3 is finite),
and that in the ideal structure cos0jtk = —

—,
' for such triplet, so that the three-body terms all vanish. The cohesive ener-

gy of the solid thus arises only from the two-body terms, acting only between nearest neighbors, and the three-body

triplets include atoms which are, at most, second neighbors.
Tersoff has proposed a more elaborate model potential:

E =gE; = —,
' g Vj, Vj = f(r )j[A exp( ktr j) Bjexp( X2—r j)], B—j =—Boexp( Zj/b)—,

Ztj = g [w(rtk)/w(rtj)] "[c+exp(—dcosetjk)] ', w(r) =f, (r) exp( —t2r).
k &i,j

f, (r ) is a cutoff function which again cuts off the poten-

tial at a point between the first- and second-neighbor dis-

tances in the low-temperature solid. Note that TersoA'

defines Ojk slightly differently than in Ref. I. The pa-
rameters were fitted to the cohesive energy, lattice con-

stant, and bulk modulus of bulk Si, as well as to proper-
ties of the dimer and of hypothetical simple cubic and
face-centered cubic silicon. The unusual form of
Tersoff's potential has the eA'ect of including terms de-

pending on the positions of five atoms, but none are more
distant than second neighbors.

where

1,2 1,2, 3

Vi(1,2, 3) =gt Ctat(r tp)ai(r t3)Pt(cosOi).

The only approximation is that the dependence on rt2
and r13 separates into a product. They assumed an ex-

Biswas and Hamann expanded the three-body poten-
tial in spherical harmonics:

E = —,
' g V2(1,2)+ g V3(1,2, 3),
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ponential form for the ai functions and a generalized
Morse form for the two-body potential. Values of I up to
6 were included in the sum. A notable feature of their
potential is its long range. A cutoff of 10 A is barely
adequate. This corresponds to two-body interactions out
to fifteen shells of neighbors, and three-body contribu-
tions to force constants for all neighbors within 20 A.

The lattice dynamics of silicon has been treated many
times. For forces out to second neighbors, the dynam-
ics is described by two force-constant matrices. The
force-constant matrix for a nearest neighbor at position

ai pl pl
— pl al pl ,

pl pi al

and for a second neighbor at a( —,', —,',0) it is

p2

p~
—~2 —~2 y2

Given the values of these six constants, the phonon-

dispersion curves can be calculated, and also the elastic
constants, from the slopes of the acoustic branches at
long wavelengths, as

c f ) (ai + 8a2)/a,

c|2=(—ai+2pl —4a2+Sp& —4y2)/a,

c44
= (a 1 +4a q+ 4 y2

—
p i /a 1 )/a.

The last term in c44 arises from the internal strain as the
structure is sheared.

It is straightforward to differentiate the model of Stil-
linger and Weber to obtain (at the spacing correspond-
ing to the minimum of f2)

ai =F+16G, pl=F —SG,

a2=pq=G, y2= —4G, &2=2G,

where F arises from the two-body potential,

F =(e/3o ) rd f2/dr jr =2i/6,

and G arises from the three-body terms,

G =(Sek/27cr r )exp[2y/(r —a)], r =2'

Note that all of the force constants are expressed in

terms of two parameters, and that the second-neighbor
force-constant matrix is entirely proportional to the sin-

gle quantity G. This particular two-parameter model for
the force constants appears to have been discussed first

by Harrison. The values of the six force constants cal-
culated with use of the parameters of Ref. 1 are given in

Table I, as model l.
Tersoff s model does not lend itself to analytic calcula-

tion of the force constants, and most of the values were
obtained by numerical differentiation of the energy of a
suitable cluster. The values are also given in Table I, as
model 2. Force constants for the potential of Biswas and
Hamann were also calculated numerically, for the
nearest 33 shells of neighbors. Values for the first and
second shells are listed in Table I, as model 3.

In Table II are shown the elastic constants calculated
for the three models, together with the experimental
values. For models 1 and 2 the force constants are zero
after the first two shells of neighbors, and the expressions
given above were used. For model 3, contributions from
33 shells of neighbors were included. The convergence
of the sums is very slow. The bulk modulus and cll can
also be calculated by homogeneous deformation, and
that method gave values within 2% of the values from
the method of long waves. For models 1 and 2, the cal-
culations were made for the experimental room-tem-
perature lattice constant of 5.43 A, but for model 3 the
calculations were made for the lattice constant of 5.354
A, which minimizes the energy.

Stillinger and Weber's model was not directly fitted to
any elastic properties, but it gives a reasonable descrip-
tion of all of them (the worst error is 30'/p, in c44).
Tersoff's model was fitted to the bulk modulus, but there
is a delicate cancellation between first- and second-
neighbor contributions, and the individual elastic con-
stants are less well described. Biswas and Hamann's
model gives elastic constants of comparable quality to
model 1, but deviates from the experimental values in

the prediction of too steep a slope to the dispersion

Force constant Model 1

Value
Model 2 Model 3

TABLE I. First- and second-neighbor force constants, in
10' dyn/cm. TABLE II. Elastic constants and selected frequencies.

Elastic constants are in units of 10' dyn/cm2 and the normal-

mode frequencies are in terahertz.

al
Pl
Q2

P~

y2

62

7.314
5.000
0.113
0.113

—0.452
0.226

27.282
27.861
—2.702
—2.494

3.524
3.176

14.084
13.578

—0.597
—0.412

1.512
1.331

C 12

~44

vp(q —0)
~A(X)

Model 1

1.514
0.764
0.564

17.83
5.96

Model 2

1.044
0.597
0.390

34.43
4.81

Model 3

1.71
1.00
0.92

24.65
7.14

Expt.

1.657
0.639
0.796

15.3
4.38

2380
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curves while Stillinger and Weber's model is too soft.
To characterize the rest of the dispersion curves, I also

give in Table II the values of the zone-center optical fre-
quency vo, and the frequency of the zone-boundary
transverse acoustic phonon at the X point. The zone-
center frequency establishes the overall position of the
optical branches. Stillinger and Weber's model gets the
value about right, but the other models are much too
high. The phonon-dispersion curves of silicon and ger-
manium are characterized by very flat transverse acous-
tic branches, and the value of the TA(X) frequency tests
this behavior. All of the calculated values are too high.
It is very unlikely that a model which truncates the
forces at two neighbors can give a satisfactory descrip-
tion of the dispersion curves. The flattening of the trans-
verse acoustic branches is very diScult to reproduce un-
less some kind of electrostatic force is included.
Cochran'o has shown that a shell model for the electro-
static terms leads to long-range effective forces which de-
cay exponentially. The model of Biswas and Hamann is
qualitatively in agreement with this.

Perhaps the most surprising result is that three models
which all do a reasonable job of describing the structural
properties can give such different values for elastic and
vibrational properties, especially the Raman frequency,
vo. This justifies the use of these properties as a filter for
the different models. As is often the case, when a model

is made more complicated and fitted to additional values,
it becomes less reliable in predicting values which were
not fitted. The simplest of the three models, that of Stil-
linger and Weber, gives the best overall description of
the lattice dynamics. It is, however, still only partially in

agreement with experiment. The use of any of these
models to calculate quantities with a significant vibra-
tional contribution should proceed with caution.
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