Comment on "Spin-Spin Dependence of Total Cross Sections as an Effect of Static Nuclear Deformation"

In a recent Letter,¹ Hnizdo and Kemper (HK) investigated the effect of static deformation of polarized target nuclei on total cross sections for polarized neutrons. They showed that coupling through the spin-orbit interaction leads to transfer of orbital angular momentum in elastic scattering if the polarized target nucleus is deformed and has spin $I > \frac{1}{2}$. This quadrupole reorientation (QR) effect gives rise to a spin-spin cross section, σ_{ss} , and HK state that QR alone, without any spin-spin potentials, leads to differences in $n_{pol} + {}^{27}Al_{pol}$ total cross sections having the magnitudes observed by us.² While this is an interesting effect, we point out here that it does not account for the spin-spin dependence we observed, and is also not as large as estimated in HK. Further, QR effects were implicitly included in our analysis with real and imaginary spin-spin potentials V_{ss} and W_{ss} , since QR is simulated by a predominantly imaginary spin-spin potential.

As is known from the theory of scattering, it is always possible to parametrize elastic scattering by potentials. The spin-spin components of these potentials will give rise to oscillatory behavior of σ_{ss} with energy. The zero crossings of σ_{ss} are determined by the strength and geometry of the total scattering potential, and will occur at quite different energies for $V_{ss}\neq 0$ compared to $W_{ss}\neq 0$. These features have been noted previously, even for situations involving deformed nuclei.^{3,4}

The σ_{ss} value in our experiment² providing the strongest indication of nonzero V_{ss} is at 5 MeV, close to the maximum of sensitivity for $V_{ss} \neq 0$. This datum point is not reproduced in Fig. 1 of HK and was excluded from their comparison because of sensitivity to compoundnuclear (CN) effects. This is not valid. CN effects can be simulated by part of W_{ss} , and around 5 MeV σ_{ss} is insensitive to W_{ss} . To fit this point with only an imaginary potential would require $W_{ss} > 2$ MeV, leading to even larger σ_{ss} values at higher energies where there is no reason to believe that CN effects should be smaller.

Reference 4 in HK quotes quadrupole moments Q_2 for ²⁷Al of 15 and 38 e^2 fm⁴. But two subsequent analyses⁵ of the latter value reduced it to 15 e^2 fm⁴, consistent with current compilations.⁶ This is half the value used in HK, thus reducing the QR effect by a factor of 2.

The absorptive character of QR is seen by a comparison of Fig. 1 of HK with the $W_{ss} = -150$ keV curve of our Fig. 2. Both curves cross zero near 4 MeV and reach maxima between 8 and 10 MeV. This suggests that the QR mechanism is associated mainly with spin-dependent removal of flux, that is, with W_{ss} rather than with V_{ss} . To construct a potential which approximates QR effects, one can use methods developed for calculating dynamic polarization potentials in heavy-ion scattering.⁷ The conclusion of this analysis (to be described in detail elsewhere) is that, as in Ref. 7, nuclear quadrupole coupling produces a predominantly absorptive potential which falls off with distance much more slowly than its real part.

In conclusion, HK have uncovered an interesting mechanism whereby some of σ_{ss} is generated by the interplay of spin-orbit forces and nuclear deformation. This mechanism contributes primarily to W_{ss} , however, and its effects on σ_{ss} can be distinguished from that of V_{ss} by energy dependence.

This work was supported in part by the U.S. Department of Energy under Contracts No. DE-AC05-76ER01067, No. DE-AS05-76ER03624, and No. DE-AS05-76ER02408.

C. R. Gould, $^{(1,2)}$ N. R. Roberson, $^{(1,3)}$ and W. J. Thompson $^{(1,4)}$

- ⁽¹⁾Triangle Universities Nuclear Laboratory Durham, North Carolina 27706
- ⁽²⁾Department of Physics North Carolina State University Raleigh, North Carolina 27695
- ⁽³⁾Department of Physics Duke University Durham, North Carolina 27706
- ⁽⁴⁾Department of Physics and Astronomy University of North Carolina Chapel Hill, North Carolina 27599

Received 12 February 1988 PACS numbers: 25.40.-h, 24.70.+s

¹V. Hnizdo and K. W. Kemper, Phys. Rev. Lett. **59**, 1892 (1987).

²C. R. Gould et al., Phys. Rev. Lett. 57, 2371 (1986).

³T. R. Fisher, D. C. Healy, and J. S. McCarthy, Nucl. Phys. **A130**, 609 (1969).

⁴H. Marshak et al., Phys. Rev. C 2, 1862 (1970).

- ⁵G. A. Sawatzky and J. Hupkes, Phys. Rev. Lett. **25**, 100 (1970); R. R. Sharma, Phys. Rev. Lett. **25**, 1622 (1970).
- ⁶P. M. Endt and C. van der Leun, Nucl. Phys. A310, 1 (1978).

 7 W. G. Love, T. Terasawa, and G. R. Satchler, Nucl. Phys. **A291**, 183 (1977).